
ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 1 of 73

Embedded multi-core systems for

mixed criticality applications

in dynamic and changeable real-time environments

 Project Acronym:

EMC²

Grant agreement no: 621429

Deliverable

no. and title
D9.6– Space Applications Final Report

Work package WP9 Space Applications

Task / Use Case T9.1-T9.5 Space Applications

Subtasks involved UC3.1-UC3.5

Lead contractor Infineon Technologies AG

Dr. Werner Weber, mailto:werner.weber@infineon.com

Deliverable

responsible

Thales Alenia Space Spain

Tres Cantos, Madrid

Version number v1.0

Date 07/04/2017

Status Final

Dissemination level Public (PU)

Copyright: EMC2 Project Consortium, 2017

mailto:werner.weber@infineon.com

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 2 of 73

Authors

Partici-

pant

no.

Part.

short

name

Author name Chapter(s)

64 15I INTEGRASYS Juan Luis Mañas Use Case Optical Payload Applications

20 02E TUW Haris Isakovic Use case MPSoC Hardware for Space

62 15E TECNALIA Daniel Mugica Use case MPSoC Hardware for Space

70 15Q ITI Sergio Saez Use Case MPSoC Software and Tools for Space

19 02D TTT Arjan Geven Use case MPSoC Hardware for Space

63 15F TASE Dr. Manuel Sanchez Use Case Optical Payload Applications

50 11J TASI Dario Pascucci Use Case Platform Application/ Radar Payload

Document History

Version Date Author name Reason

v0.1 27/03/2017 WP9 Partners First version

…

v1.0 06/04/2017 Manuel Sanchez Project internal review comments integrated,
deliverable finalized

07/04/2017 Alfred Hoess Final editing and formatting; deliverable submission

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 3 of 73

Publishable Executive Summary

Scope of this document is to provide a detailed description of Space Applications in the frame of WP9

Living Lab. The figure below provides an overview of the WP9 organization. Target of this document is to

support T9.1- T9.4 by the structuring of the use case building blocks.

WP9 Organization

This deliverable provides an explanation of the use cases and the contributions of the EMC² WP9 partners.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 4 of 73

Table of contents

1. Introduction ... 8

1.1 Objective and scope of the document .. 8

1.2 Structure of the deliverable report ... 8

2. MPSoC Hardware for Space ... 9

2.1 Fault-Tolerant and Self-Healing Dynamic Reconfiguration Manager ... 9

2.1.1 DRM design performance ... 9
2.1.1.1 Scrubbing actions timing .. 9
2.1.1.2 DRM monitoring timing parameters ... 11
2.1.1.3 Command execution timing .. 13

2.1.2 Robustness and Self-Healing evaluation of the solution ... 14

2.2 Peformance prediction, Architecture Test and Benchmarking .. 17

2.2.1 Performance prediction ... 18
2.2.1.1 CCSDS 122 use case .. 19
2.2.1.2 AES-128/256 use case .. 22

2.3 Distributed platform TTEthernet configuration tooling .. 24

2.4 Heterogenous TTNoC Architecture ... 26

3. MPSoC Software and Tools for Space .. 27

3.1 Application of EMC2 technical developments ... 28

3.2 Detailed description of the application and the use case ... 30

3.2.1 Platform Model description ... 30
3.2.2 Application Model description .. 30
3.2.3 Deployment Model description.. 30
3.2.4 System Analysis description .. 30
3.2.5 Code Generation description ... 31

4. Optical Payload Applications ... 32

4.1 Integrasys Satellite Communications Link Emulator .. 32

4.1.1 Structure .. 32
4.1.2 Operation .. 33

4.1.2.1 Test setup .. 33
4.1.2.2 Test results... 33

4.1.3 Derived conclusions .. 35

4.2 MPSoC Video Processor for Earth Observation Instruments .. 35

4.2.1 Performance evaluation ... 36

5. Use Case Platform Applications ... 38

5.1 Introduction .. 38

5.2 Target Hardware Platform ... 38

5.3 Analysis and Benchmarking of the XtratuM and PikeOS Hypervisors .. 40

5.3.1 General architectural considerations .. 40
5.3.2 Time management ... 42
5.3.3 Performance considerations ... 42
5.3.4 Consideration on the development of device drivers .. 44
5.3.5 Re-use of legacy code ... 44
5.3.6 Isolation related features ... 45

5.4 Prototypal Platform ... 46

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 5 of 73

5.4.1 Design details ... 47
5.4.2 Hypervisor-based implementation ... 50
5.4.3 PikeOS specific approach .. 52
5.4.4 XtratuM specific approach .. 53

5.5 Conclusions .. 54

6. Radar Payload Applications ... 55

6.1 Algorithm Requirements for the HPEC Architecture Study Case ... 55

6.2 EMC2 Demonstrator Functional Requirements .. 56

6.2.1 HRWS Introduction .. 56
6.2.2 Functional Requirements ... 57

6.2.2.1 Elevation Digital Beam Forming Processing Requirements ... 59
6.2.2.2 Azimuth DBF Processing Requirements ... 60
6.2.2.3 EMC2 Demonstrator Parameter values ... 63
6.2.2.4 Block Adaptive Quantizer (BAQ) Processing Requirements ... 65

6.3 Conclusions for Radar Payload Applications ... 72

7. References... 73

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 6 of 73

List of figures

Figure 1: System architecture diagram of the Reliable and Self-Healing DRM .. 9
Figure 2: SYNDROME_VALID signal while scrubbing a configuration frame with one bit error11
Figure 3: SYNDROME_VALID signal while scrubbing a configuration frame with two bit errors11
Figure 4: SYNDROME_VALID signal while full device scrubbing ...12
Figure 5: DONE signal low during Virtex-5 reconfiguration ..12
Figure 6: SYNDROME_VALID pulses after Virtex-5 reconfiguration ...13
Figure 7: Recovering from design intrusive SEFI ..15
Figure 8: SEFI_FLAG assertion after unsuccessful FAR checking ...16
Figure 9: LEON messages when the DRM does not answer to the commands ..16
Figure 10: detail of the HW components used to model the platform ..19
Figure 11: Detail of the SW allocation in a HW platform containing two processors. ...19
Figure 12: Execution of the different threads of the CCSDS on the two-core platform ..21
Figure 13: CPU utilization and number of instructions executed..22
Figure 14: Bus transfers in the CCSDS example. ..22
Figure 15: Execution of the different threads of the AES example on the two-core platform24
Figure 16: Device Editor and TTE-Tools interaction ..25
Figure 17: Device Editor and TTE-Tools interaction ..25
Figure 18: Arria V SoC Development Board and Block Diagram of the Architecture ...26
Figure 19: Heteroegenous TT MPSoC architecture ..26
Figure 20: Stage Deployment model - Allowed elements ...28
Figure 21: Deployment model - Execution constraints ...29
Figure 22: Deployment model - Task partition ...29
Figure 23: Code generation - RTEMS example ..31
Figure 24: Satellite Communications Link Emulator Block Diagram..32
Figure 25: Application Test Setup ...33
Figure 26: Resources Results on Single-Core Version..34
Figure 27: Resources Results on Quad-Core Version ...35
Figure 28: Speedup for DWT+BPE with a 4000x4000 image (8bit) & Speedup for DWT+BPE for three image sizes

(8bits) ..36
Figure 29: Speedup for AES CTR mode ..37
Figure 30: AES: Throughput (Mbyte/s) with a 64Mbyte data chunk ...37
Figure 31: Simplified view of the Gaisler Leon4 processor ..39
Figure 32: Schematization of the PikeOS hypervisor architecture...41
Figure 33: Schematization of the XtratuM hypervisor architecture ...41
Figure 34: Inter-partition communication test setup ...43
Figure 35: Shared memory performance test setup ...44
Figure 36: Integration of a legacy Star Tracker management software in the virtualized environment45
Figure 37: Proposed demonstrator setup ..46
Figure 38: Prototype software logic schematization ...47
Figure 39: Major and minor cycle for the I/O Scheduling...48
Figure 40: Logic schematization of the Telecommand & Telemetry management function48
Figure 41: Logic schematization of the Star Tracker management function ..49
Figure 42: Logic schematization of the Large File Transfer management function ..50
Figure 43: Hypervisor based implementation of the proposed software ..51
Figure 44: Generic task execution model ...51
Figure 45: Mapping of the various software component on different CPUs with different partitions52
Figure 46: PikeOS based implementation of the proposed software ..53
Figure 47: XtratuM based implementation of the proposed software ..53
Figure 48 High Level Block Scheme of SBR Payloads ..55
Figure 49: High Resolution Wide Swath (HRWS) SAR System. ..57
Figure 50: Scan-On-Receive (SCORE) Technique ...57
Figure 51: Digital Beam Forming (DBF) Processing Scheme for each Satellite Azimuth Position.58
Figure 52: Elevation Digital Beam Forming (DBF) Processing Scheme. ..59
Figure 53: Azimuth DBF Processing Scheme. ...60
Figure 54: n-th Interleaving Block Diagram for the Azimuth DBF Processing ..61
Figure 55: Tx/Rx Antenna Geometrical Relationships ...64

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 7 of 73

List of tables

Table 1: Scrubbing time measurements ...10
Table 2: Command execution times ...13
Table 3: Overview of the target boards relevant characteristics ..39
Table 4: Queuing port performance comparison, L2 cache disabled ...43
Table 5: Queuing port performance comparison, L2 cache enabled ..43
Table 6: Sampling port performance comparison, L2 cache disabled ..43
Table 7: Sampling port performance comparison, L2 cache disabled ..43
Table 8: Shared memory performance comparison ..44
Table 9: UART driver performance in PikeOS, kernel mode vs. user mode driver ..44
Table 10: Criticality levels for the various software components ..47
Table 11: Reference timing for the proposed prototype platform ..50
Table 12: EMC2 Demonstrator Constraints ...63
Table 13: Operative Scenario ..64
Table 14: Quantizer Thresholds ...66
Table 15: Number of BAQ Parameter Values to be stored for each Compression Ratio ..67
Table 16: Sign & Magnitude Coding ...67
Table 17: 8:4 Compression Ratio Binary Coding ...69
Table 18: 8:3 Compression Ratio Binary Coding ...69
Table 19: 8:2 Compression Ratio Binary Coding ...69

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 8 of 73

1. Introduction

1.1 Objective and scope of the document

Scope of this document is to summarize the space use case results of the demonstrators related with WP9

(Space Applications).

The description comprises the hardware and software involve in each use case. MPSoCs suitable for space

applications have been selected in order to obtain fault-tolerance processors.

1.2 Structure of the deliverable report

The document is organized as follow: Section 2 provides the use case of hardware for space. Section 3

provides the use case of software and tools for space, while Section 4 provides the use case of optical

payload applications. Finally Section 5 provide use case platform applications.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 9 of 73

2. MPSoC Hardware for Space

2.1 Fault-Tolerant and Self-Healing Dynamic Reconfiguration Manager

A Reliable and Self-Healing Dynamic Reconfiguration Manager (DRM) is the solution proposed by TASE

and TECNALIA in order to perform partial reconfiguration of a Virtex-5QV FPGA in a safe (reliable) way

in the space environment, which is one of the main technical breakthroughs pursued in this WP9 use case.
This solution has been designed in the context of WP4, while its robustness has been evaluated in WP9. A

basic DRM, that is, a DRM without fault-tolerance elements, running on the Virtex-5 FPGA of the LADAP

board and performing partial reconfiguration under command of LEON processor was demonstrated during
the second year review. Now, all the specified fault-tolerance elements have been included to make the DRM

reliable and self-healing and the final implementation has been tested and evaluated.

Figure 1 shows the final architecture block diagram of the Reliable and Self-Healing DRM designed by

TECNALIA and implemented in the Virtex-5 device of the LADAP platform. It is externally controlled and

monitored by a LEON processor implemented by TASE in the RTAX device of the hardware platform.

Figure 1: System architecture diagram of the Reliable and Self-Healing DRM

The DRM hardware implementation details have been described in D4.9 and D4.10, while the DRM

software implementation details were explained in D9.5. The DRM functional validation tests and their
results have been explained in deliverables D4.9 and D4.10. The rest of this section describes the DRM

performance achievements and presents the evaluation of the final solution from the point of view of its

robustness and self-healing capability.

2.1.1 DRM design performance

2.1.1.1 Scrubbing actions timing

The DRM performs three types of scrubbing actions:

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 10 of 73

 Scrubbing a configuration frame with one bit error. MicroBlaze reads the frame through the ICAP port,

toggles the error bit and writes the corrected frame back.

 Scrubbing a configuration frame with two bit errors. Since the error positions are unknown, MicroBlaze

gets the good configuration frame data from the external data flash and writes it into the FPGA

configuration memory through the ICAP port.

 Full device scrubbing. MicroBlaze re-writes all the configuration frames of block type 000. As in the

previous case, good configuration data is read from the data flash. This scrubbing action is performed

when the Configuration Memory Monitor peripheral detects a global error in the configuration memory,

or when periodical blind scrubbing is enabled (under LEON control).

The time that the DRM needs to perform those actions is shown in the next table. Details on the time needed

to execute some of their steps are also provided. Note: these times have been measured when the DRM runs

an application that does not print any message out to the Tera Term console, as it would be the case in a real
scenario.

Parameter Time

Time that MicroBlaze needs to read one configuration frame through the ICAP

port
30.3 µs

Time that MicroBlaze needs to write one configuration frame through the ICAP

port
33.7 µs

Time that MicroBlaze needs to scrub a frame with one bit error (configuration

frame is read, error bit is toggled and frame is written back)
66.5 µs

Time to perform FAR register checking 16.4 µs

Time to perform fake SEFI checking 5.55 µs

Time from the MicroBlaze application main loop detects that there is a pending

scrub action request (scrub_cmd_req ≠ 0) to the action is completed and the
scrub_cmd_req flag is cleared, for the case of a frame with one bit error

90 µs

Time that MicroBlaze needs to scrub a frame with two bit errors (access to

external data flash is required)
82.2 µs

Time from the MicroBlaze application main loop detects that there is a pending

scrub action request (scrub_cmd_req ≠ 0) to the action is completed and the

scrub_cmd_req flag is cleared, for the case of a frame with two bit errors
105.6 µs

Time to execute the microblaze_scrub() function 820 ns

Time that MicroBlaze needs to perform full device scrubbing 1.176 s

Time from Configuration Memory Monitor interrupt to the MicroBlaze

application main loop detecting that there is a pending scrub action request

(scrub_cmd_req ≠ 0)

Variable from 2.8

to 3.6 µs aprox.

Table 1: Scrubbing time measurements

When a SEU flips a configuration memory cell of the FPGA, the time that the Configuration Memory

Monitor peripheral needs to detect it depends on the position of the flipped bit. This time can be anything

from almost immediately to a maximum of one scan of the device. For the XC5FX130T device and a 50
MHz ICAP clock, the maximum time is equal to 22.01632 ms.

Once the error bit is detected, and according to the time values shown in Table 1, the DRM will be able to
correct it in less than 95 µs. As reference, the SEU Controller macro provided by Xilinx will normally be

able to correct the error in less than 250 µs. So the DRM is more than twice as fast as the Xilinx SEU

Controller, which is a very good result.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 11 of 73

2.1.1.2 DRM monitoring timing parameters

The watchdog timer implemented in the RTAX device has to monitor the SYNDROME_VALID output

generated by the DRM Configuration Memory Monitor peripheral. If this signal does not have high pulses
during some time, it is an indication of design intrusive SEFI. Under normal conditions, that is, in the

absence of configuration memory errors, the SYNDORME_VALID signal has a high pulse every 41 or 49

ICAP clock cycles. When some error(s) is/are detected, the DRM performs the corresponding scrubbing
action and the SYNDROME_VALID pulses stop for some time. The maximum time without

SYNDROME_VALID pulses is 1.176 seconds (see Figure 4) which is the time needed by the DRM to

perform full device scrubbing. Note: when the DRM runs an application that prints debug messages out to
the Tera Term console, this time is slightly longer (1.182 seconds).

Figure 2: SYNDROME_VALID signal while scrubbing a configuration frame with one bit error

Figure 3: SYNDROME_VALID signal while scrubbing a configuration frame with two bit errors

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 12 of 73

Figure 4: SYNDROME_VALID signal while full device scrubbing

The watchdog timer implemented in the RTAX device will pulse the PROG_B signal low for 280 ns, and the

Virtex-5 FPGA will be reconfigured, when it detects that the SYNDROME_VALID pulses stop for more

than 1.176 s (design intrusive SEFI symptom), when the DRM asserts the SEFI_FLAG (visibility loss SEFI

symptom) or when the LEON processor requests the watchdog timer to reprogram the Virtex-5 device.
During Virtex-5 reconfiguration, the DONE and SYNDROME_VALID signals are low. Reconfiguration

ends successfully if the DONE signal goes high (this should happen 65.1 ms after the PROG_B falling edge,

for the Virtex-5 master selectMAP configuration mode) and the SYNDROME_VALID pulses start again.
The first SYNDROME_VALID pulse appears 1.06 µs after the DONE signal goes high.

Figure 5: DONE signal low during Virtex-5 reconfiguration

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 13 of 73

Figure 6: SYNDROME_VALID pulses after Virtex-5 reconfiguration

2.1.1.3 Command execution timing

We have measured the time that the DRM needs to process and execute each type of command message

received from the LEON processor. This time is measured from the assertion of the interrupt signal that
warns the DRM that there is a command message in the Mailbox DPRAM to be processed, until the DRM

asserts the interrupt signal to warn the LEON that the answer message is ready in the Mailbox DPRAM.

These times are shown in the next table.

Message Execution time (ms)

Status 0.496

Perform Operation 0.505

Request Loaded Bitstreams 0.500

Store Partial Bitstream (1) 24.7

Store Partial Bitstream (2) 7.72

Store Partial Bitstream (3) 3.12

Load Partial Bitstream 17.45

Retrieve SEU statistics 0.503

Configure SEU mitigation 0.5

Table 2: Command execution times

Notes:

a) These times have been measured when the DRM runs an application that does not print any message out

to the Tera Term console, as it would be the case in a real scenario.
b) When the DRM receives the Store Partial Bitstream command that includes the first fragment of a partial

bitstream, firstly it has to erase the data flash memory area assign to that image. This fact explains that

the execution of the first Store Partial Bitstream command takes more time than the next messages
(time#1). The next Store Partial Bitstream command messages contain 2048 bytes of the new bitstream

and the DRM has to write them into the data flash (time#2). Finally, the last fragment of the partial

bitstream may have less than 2048 bytes, so the time that the DRM needs to execute the last Store Partial
Bitstream command can be shorter (time#3).

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 14 of 73

2.1.2 Robustness and Self-Healing evaluation of the solution

In order to evaluate the robustness and self-healing capability of the implemented solution including the

DRM and the external control and monitoring agent (LEON processor and watchdog timer in the RTAX), we

have induced errors in the Virtex-5 configuration memory and in the LMB BRAM memory of the DRM sub-
system using the mechanism described in section 3.2 of D4.10. In this way we have simulated the different

scenarios that could take place in a real situation under space radiation. In each scenario we have checked

that the system can recover from the error. In most cases, the error does not have any impact on the DRM, so
it can correct it and we can say that the Virtex-5 is self-healing. When the error does have a negative impact

on the DRM design, the external monitoring agent comes into action and the system recovers after Virtex-5

reconfiguration. Here is a summary of the simulated scenarios and the results:

1. Errors induced in the Virtex-5 configuration memory without negative impact on the DRM.

The following cases have been tested in this scenario:

a) One bit is toggled in a configuration frame. The error is always detected and corrected. Just one
correction action is done. The associated statistics counter (Single-Error Configuration Memory

Frames counter) is increased in one unit and the next information message is printed out by the

DRM:

b) Two bits are toggled in a configuration frame. The errors are always detected and corrected. Just one

correction action is done. The associated statistics counter (Double-Error Configuration Memory

Frames counter) is increased in one unit and the next information message is printed out by the
DRM:

c) Three bits are toggled in a configuration frame. The errors are always detected and corrected. In
most cases two correction actions are done (scrub action 1 and scrub action 3), and in some cases

just one correction action is done (scrub action 3). This happens because the ECC checking

algorithm can infer that there is just one bit error. Since toggling this bit does not solve the problem,
a global CRC error in the configuration memory is detected and a full device scrub action is done

(this is action 3). One or two statistics counters (Single-Error Configuration Memory Frames counter

and Full Scrubbing Processes counter) are increased in one unit. The next information messages (or
just the second one) are printed out by the DRM:

d) Four bits are toggled in a configuration frame. The errors are always detected and corrected. In the

tests we have carried out just one correction action is done. This action can be scrub action 3 (which

means full device scrubbing) or scrub action 2 (which means scrubbing of a frame with two bit
errors; although 2 bit errors are reported instead of 4, all the bit errors are corrected because the

configuration frame is scrubbed with data read from the data flash). It could happen that, as in the

previous case, two correction actions (scrub action 1 and scrub action 3) were done, since it depends

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 15 of 73

on the result of the ECC checking algorithm. In any case, the associated statistic counter(s) is/are

increased in one unit and each information message printed out once.

2. Errors induced in the Virtex-5 configuration memory causing design intrusive SEFI.

These are errors that make the SYNDROME_VALID pulses stop. There could be no negative impact on

the design functionality. However, new errors in the configuration memory wouldn’t be detected. The

only possible solution is FPGA reconfiguration. We have been able to simulate this situation and check
that the watchdog timer in the RTAX detects that the SYNDROME_VALID pulses stop and asserts the

PROG_B signal. For example, this happens when toggling the second bit of the configuration frame with

address 0x001415. Figure 7 shows that if there are not SYNDROME_VALID pulses for 1.2 seconds, the
watchdog timer asserts the PROG_B signal. After Virtex-5 reconfiguration the SYNDROME_VALID

pulses resume.

Figure 7: Recovering from design intrusive SEFI

3. Errors induced in the Virtex-5 configuration memory causing visibility loss SEFI.
These are errors that affect the ICAP interface. The design continues working but the DRM does not
have visibility of the configuration memory and configuration registers through the ICAP port. In this

situation, the DRM should set the SEFI_FLAG signal high and the external watchdog timer will assert

the PROG_B signal low to reconfigure the Virtex-5 FPGA. We have been able to simulate this situation

and check that the system behaves as expected and it recovers from the failure. For example, when
toggling the 235th or 236th bit in the configuration frame with address 0x001A05, the error is detected by

the Configuration Memory Monitor peripheral, but FAR register checking (which is done before any

scrubbing attempt) fails. Consequently, as shown in xxx, the DRM asserts the SEFI_FLAG output, the
external watchdog timer asserts the PROG_B signal low for at least 250 ns and the Virtex-5 is

reconfigured.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 16 of 73

Figure 8: SEFI_FLAG assertion after unsuccessful FAR checking

4. Errors that negatively impact on the DRM design.
Two possible situations are foreseen as indication that the DRM functionality has been affected:

a) The DRM does not answer to the command requests received from the LEON processor.

b) The statistics counters are increased at a high rate. This means that errors are detected in the
configuration memory, but the DRM cannot correct them.

When the LEON detects any of these situations, it requests the watchdog timer to reprogram the Virtex-5

FPGA.

We have been able to simulate this scenario by, for example, toggling the 3rd and 4th bits at MicroBlaze

LMB memory address 0x00000014. After injecting these errors, we request1 the LEON processor to

send the Status command (command id = 0x00). In the system terminal, the LEON prints out the
messages shown in Figure 9. Since the DRM does not answer to the command request ("Copro does not

answer to last command"), the LEON timeout expires and it requests the watchdog timer to reconfigure

the Virtex-5 device ("The DRM has been successfully configured"). After reconfiguration, we request
the LEON to send the Status command and this time it receives the answer from the DRM.

(1) Note: in a real scenario, the LEON processor will periodically send the Status and Retrieve SEU

Statistics commands. During the validation tests, these commands are sent under user’s request for
debug purposes.

Figure 9: LEON messages when the DRM does not answer to the commands

After all these tests, we can conclude that:

The implemented Reliable and Self-Healing Dynamic Reconfiguration Manager is a robust solution so that

Xilinx FPGA partial reconfiguration can be safely used to dynamically change, add or remove peripherals in

mixed-criticality systems, in general, and in the space environment in particular.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 17 of 73

2.2 Performance prediction, Architecture Test and Benchmarking

The ability to properly reuse scarce resources on a spacecraft can determine the success or failure of a

mission. Therefore, increasing performance while maintaining or reducing costs is required to allow the full
potential of space to be exploited. For such purpose, it is required to adapt the hardware advances developed

for other activities to be adopted in the space domain.

In this context, multiprocessor systems-on-chips (MPSoC) are one of the key features of current technology.
However, its integration in the space business is still low, due to two main reasons. On the one hand, while

typical MPSoCs on complex microprocessors, tools oriented to develop space systems need to consider

microcontrollers as the main processing elements, instead of microprocessors. Then, it is required to
transform previous MPSoC concepts into Multi Controller System on Chip (MCSoC).

On the other hand, space applications have to handle strict non-functional requirements such as criticality,

safety, timeliness, security and reliability. Thus, the development of these systems is typically long and
complex. However, there is a lack of methodologies and tools to support the exploitation of these new

technologies in the scope of systems considering the peculiarities of space applications. As a result, it is

important to develop tools capable of ensuring that the design process is in the right direction from the very
beginning, since going back in the designs is very costly.

Several alternatives have been proposed to simulate processor operation in order to create virtual platforms.
These alternatives propose working at different levels of abstraction, providing different tradeoffs in terms of

accuracy vs. performance and usability. Among them, host-compiled simulation is one of the most promising

solutions since it provides best performance and it is easy to use. This technique is based on static annotation

of the original SW source code with the expected performance it would have in the target platform. After
that, compilation and execution of the annotated code in the host computer is done.

Host-compiled simulation is a technology oriented to generate fast virtual platform models, where the
different design alternatives can be checked at the beginning of the design process. Fast virtual platform

models are quite important in embedded system development since they enable embedded software

development, performance analysis and verification by running code on a prototype of the hardware platform
much earlier than the real platform and the final SW adaptations to the specific HW are available.

In that way, during this project, a previous tool (VIPPE) has been expanded and adapted to be able to model

these multi-controller systems, especially LEON3-based systems. VIPPE is a tool oriented to create virtual
platforms based on host-compiled simulation. It can model multi-core platforms, including SystemC

peripherals, and it integrates an abstract model of the Operating System, providing several APIs, such as

POSIX, which enables to simulate embedded Linux platforms.

For example, it is currently perfectly possible to run a set of applications on a FPGA programmed to

implement a platform containing one or two LEON processors. However, it is not easy to evaluate the real

performance and the side effects resulting from the interactions of these applications since the frequency of
the FPGA, and thus, the execution speed, is much smaller than in the final chip.

This approach has the capability to approximate the resulting simulation speed to the speed of the native
execution of the original source code in the host computer. Furthermore, it does not require porting the SW

(such as the compiler or device drivers) to the target platform, which is extremely useful specially for

platforms that are initially developed on FPGAs, where multiple HW configurations, including application-
specific HW can be design. In this context, as the proposed simulation tool has the capability of predicting

the performance and behavior of the different applications on the final chip, it can help designers to check if

the HW alternatives selected adequate or not, reducing the number of HW redesigns required. Additionally,

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 18 of 73

the tool enables to optimize the application SW considering the details of the HW platform under

development before a real prototype is available.

To demonstrate that capabilities and evaluate its correct behavior, in this task of the project, the tool has been

used to explore the effect that different SW optimizations will have in the target board.

2.2.1 Performance prediction

The work performed in this task has focused on the evaluation of the impact that different SW optimizations

preformed in sequential C codes will have in a certain HW platform, specially when transforming sequential

codes into concurrent codes capable of take advantage of multi-core platforms. During these experiments,

the target platform modeled has been a mono and dual-core LEON3-based platform running on a XILINX
ML506 FGPA-based platform.

The fact that an FPGA-based platform has been selected could be weird since one of the main goals of the

tool is to model the behavior of platforms before its physical availability. However, this board has been used
in order to enable the comparison between the performance results obtained by the simulator and the results

obtained from real executions. Considering that the number of clock cycles required to by the HW does not

typically change when selecting a different technology, once the simulator has been validated against an
FPGA-based implementation, the extrapolation of the results to other kind of implementations of the same

VHDL code is simple. It can be easily done using the simulator, just by adapting the clock frequency, and

other numbers, such as the delay of the external SDRAM chips.

To check the tool, two SW applications have been selected: a CCSDS 122 coder, and a AES coder. Both
applications have been used to evaluate how SW parallelization behave in a multi-core platform. For such

purpose, first they have been evaluated running the initial, sequential version on a mono-core platform, under

a Linuxbuild OS. Then, the simulator has evaluated the impact of the modifications done in the SW code to
enable concurrency, and the effect of using a dual-core platform. The expected behavior of other

configurations with more cores have also been simulated, but not verified in the board, since its FGPA does

not enable the implementation of more cores.

 Development of the UML Models for the examples

VIPPE tool uses standard UML/MARTE models as inputs. In these models, the user describes the SW

components of the application and their interconnections, the HW platform, including all the parameters

required to perform a proper simulation, and the compilation information required to create the target

executables. Since the application SW in the examples used has been developed as a single component, the

UML models mainly focus on the description of the platform: processor (type, frequency, …), caches (size,

sets, …), bus, main memory, etc.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 19 of 73

Figure 10: detail of the HW components used to model the platform

Then, the model can be used to automatically generate the executables required both for simulation in the PC

and execution on the target board, which is important to speed-up the comparison processes. Additionally,

just changing the parameters in the model it is possible to use the simulator developed to evaluate multiple

configurations without requiring its implementation in the target board.

Figure 11: Detail of the SW allocation in a HW platform containing two processors.

2.2.1.1 CCSDS 122 use case

To evaluate the accuracy of the tool developed, the first experiment performed was the execution of a

CCSDS 122 coder both in the simulator and the real platform. This enables comparing the results obtained

with the simulator developed in the project with respect to results obtained from the real implementation. For

such purpose, a XILINX ML506 platform (Virtex 5) board has been used. This board has been configure

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 20 of 73

integrating platforms with 1 and 2 LEON3 cores and a “FPU-lite” unit has been added to perform floating

point instructions. Regarding the SW platform, both comparisons in bare metal, and with Linuxbuild OS

have been performed.

Since the LLVM has a port for “sparc v8” but not specifically for LEON3, some problems with the

assembling step have appeared when generating executables for the target board. To solve them, the

assembly code obtained with LLVM was transformed into binary with the corresponding GNU tool (“as”)

instead of with the LLVM tool.

To obtain information about number of cycles and instructions in the real platform to perform the

comparisons, the peripheral “l3stat” provided in the standard distribution of LEON3 VHDL codes (version

1.4 onwards) has been used. Accessing “l3stat” registers for starting/stopping the counters adds some

overhead, which has been measured using an empty “main” function. Then, this value has been subtracted

from the real measures before putting them in the tables below. In the case of 2 cores with OS, the overhead

is not constant, and thus values measured has some small uncertainty. This uncertainty can be estimated

comparing the execution time of both cores, which should be the same. For the CCSDS example, estimation

of execution times with input images of size 1000x1000 pixels have been compared running under Linux

OS, with a real platform containing 1 and 2 cores.

For 1 core, results are:

 Board VIPPE Error %

Intructions 396363906 392061803 1,1

Cycles 792159757 724561621 8,5

Time(ms) 13202,6 12407,5 6,0

When moving to a dual-core platform, the mapping of tasks to cores change on each execution, so

instructions and cycles on each processor cannot be compared separately. In this case, comparison is only

possible analyzing the overall execution time.

Considering that issues, the results obtained are:

1 thread

 Board CPU0 CPU1 VIPPE CPU 0 CPU 1 Error %

Instructions 387605066 39716098 Instructions 413141813 32904 3,3

Time(ms) 13786,4 13822,4 Time(ms) 12737,65 7,8

2 threads

Board CPU0 CPU1 VIPPE CPU 0 CPU 1

Instructions 191801968 232804017 Instructions 214835297 198339547 2,7

Time(ms) 9064,5 9104,6 Time(ms) 7399,92 18,7

As can be seen, the parallelization integrated in the code is capable of reducing the execution time taking

advantage of the dual core. As the table shows, when considering the example, the accuracy of the estimation

tool is still quite good since all errors are below 20%.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 21 of 73

Regarding simulation speed, the results are the following:

 Time to execute in the board: 13seg

 Time required by VIPPE simulator: 0.5 seg

Thus, it demonstrates that the developed tool is an interesting alternative for early evaluation of multiple

designs, especially if we consider the time required to synthesize a full HW platform in order to be evaluated

in an FGPA as the one used in the experiments.

The tables also show that the modeling of the dual-core platform results in an increase of the percentage of

error, not in number of instructions but in number of cycles. After some analysis, there are two main reasons

for that divergence. The first one is that the OS model of the simulator cannot exactly emulate the task

allocation performed by the real OS. Therefore, different allocations have impact on cache operation and

result in different execution times, while maintaining the number of instructions executed.

The problem here, is that there is no a fixed order in the real execution. Each execution of the same

application in the real board result in a different ordering, with different execution times. Thus, although the

error can be minimized, it is not possible to fully eliminate it, since there is not a single value for the

comparison.

The second problem is due to conflicts in the bus. Typically, when several processors share the bus, there is a

distribution on the bus conflicts. However, due to the independency on the data, and since the parallelization

has been implemented in a fork/join sequence, both processors try to execute the same instructions at the

same time, resulting in a constant collision of load/store instructions. As a result, the example becomes a sort

of corner case in terms of bus collision estimation.

Together with performance estimation, the developed tool also enables the analysis of how the different

resources operate during code execution. For that purpose, VIPPE simulator provides a graphic interface

where the information is displayed. For example, next figure shows how the different threads are executed in

the two-core platform:

Figure 12: Execution of the different threads of the CCSDS on the two-core platform

At the same time, it is possible to evaluate the degree of utilization of the processors:

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 22 of 73

Figure 13: CPU utilization and number of instructions executed.

As shown in this example, most of the time, the two processors are busy, executing code, however, the

number of instructions executed are not always the same. The first half of the coding has a lower value than

the second part. The reason is the stalls resulting from accesses to the bus. It can be seen in the CPU

utilization and number of instructions executed.

Figure 14: Bus transfers in the CCSDS example.

2.2.1.2 AES-128/256 use case

As a second example, and AES coder has been applied. Since AES typically operates with block sizes of 128

bits, input data can be divided into sets of 4 words for the computations. With this division, there are no
dependences among the sets, and each set of 4 words can be operated independently from the rest of the sets,

enabling full concurrency.

Taking advantage of that, the original AES code taken as golden model, has been modified, and parallelized
supporting a variable number of threads (1,2,4, etc.). Taking the original code and the parallelized codes,

first step done was to simulate and execute in the real board a platform containing one LEON3 core.

Results obtained are the following.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 23 of 73

Sequential Bare C 1 Core

 Board Simulator Error %

 Instructions 9,21E+08 9,61E+08 4,3

 Cycles 1,59E+09 1,49E+09 6,1

 Time (s) 26,4 24,8 6,1

Concurrent Linux 1 Core

 Board Simulator Error

1 Thread Instructions 1,06E+09 1,12E+09 5,9

 Cycles 2,02E+09 2,04E+09 0,6

 Time (s) 33,7 33,9 0,6

2 Threads Instructions 1,07E+09 1,12E+09 5,2

 Cycles 2,05E+09 2,01E+09 2,0

 Time (s) 34,2 33,3 2,3

4 Threads Instructions 1,07E+09 1,12E+09 5,5

 Cycles 2,05E+09 1,98E+09 3,4

 Time (s) 34,2 33,0 3,4

As it can be seen, accuracy on the results obtained for these experiments is quite high.
A second experiment done with the example was to apply a dual-core LEON3 board, to the parallelized

application, using with 1, 2 and 4 threads to execute the application:

Concurrent Linux 2 Cores
 Board Simulator Error %

1 Thread Core 0 Instructions 2,60E+07 1,13E+09

 Core 1 Instructions 1,06E+09 723

 Total Instructions 1,09E+09 1,13E+09 4,3

 Core 0 Cycles 2,30E+09 2,19E+09 5,1

 Time (s) 38,375 36,446 5,0

2 Threads Core 0 Instructions 5,33E+08 5,66E+08

 Core 1 Instructions 5,37E+08 5,66E+08

 Total Instructions 1,07E+09 1,13E+09 6,1

 Core 0 Cycles 1,22E+09 1,09E+09 10,9

 Time (s) 20,382 18,18 10,8

4 Threads Core 0 Instructions 5,38E+08 5,71E+08

 Core 1 Instructions 5,37E+08 5,62E+08

 Total Instructions 1,08E+09 1,13E+09 5,4

 Core 0 Cycles 1,24E+09 1,02E+09 17,8

 Time (s) 20,609 16,961 17,7

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 24 of 73

Tables show that the error is similar than in previous example, and it comes from the same reasons. In that

context, it can be concluded that a deeper analysis of bus collisions can be required to minimize estimation

error in case of multithread systems
Nevertheless, the final error is below 20%, which is a good result for an early estimation. It is important

when compared with the simulation time achieved. While the real execution of the code takes from 17 to 36

seconds in executing the codification of the proposed sequence, VIPPE simulator takes 2.5 to 3 seconds in

performing the simulation. This means that it is a very good solution to evaluate large SW applications, since
they take an order of magnitude less that the execution in the real FGPA-based board.

Finally, the graphic interface can be also used to see how the parallelization of the AES result in a more
constant operation:

Figure 15: Execution of the different threads of the AES example on the two-core platform

2.3 Distributed platform TTEthernet configuration tooling

In the last phase of EMC2, further research work has been performed on the TTEthernet toolchain in order to

support the network configuration for the network nodes targeted for space platform integration. Such nodes

can reside within the same multicore chip, or between several multicore chips within one control computer,

or between several control computers within the satellite. Whereas the previous phase was concentrated on

the development of the network planning and binary generation, the last phase has particularly targeted the

creation, visualization and subsequent refinement of individual time-critical traffic flows over TTEthernet

networks.

As described in D9.5, the TTEthernet toolchain allows for the planning of the TTEthernet network with its

networking nodes, the creation of physical and logical channels in the network and mapping the

corresponding virtual links to the devices connected in a so-called “network description” (ND). The tool

performs checking and validation of the ND and checks if the critical traffic can be scheduled according to

its timing constraints (i.e. period, latency, bandwidth allocation). Based on this calculation, the schedule for

time-triggered traffic is provided and corresponding Network Configuration files (NC database) are created

which provide the individual configuration files for each of the devices in the network. New to this

environment is the Device Configuration Editor.

To allow configuring the TTEthernet device configurations a GUI based editor enabling the user to edit the

device configurations in a convenient way has been developed. This editor allows modifying the mapping

between the partitions/tasks of the applications/host with the partitions and data-ports of the TTEthernet End

System to be configured without using the network/system level tools. Moreover it checks the configuration

for consistency.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 25 of 73

Figure 16: Device Editor and TTE-Tools interaction

Figure 16 illustrates the device editor toolchain and also provides the interface description to the TTE-Tools.

As illustrated, the TTE-Tools configuration can be loaded back in to the device editor tool called TTE-Flow

via an additional format called Network Information (NI). This format allows loading one or multiple device

configurations into the TTE-Flow tools. The NI format is used to edit the devices in GUI mode.

Figure 17: Device Editor and TTE-Tools interaction

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 26 of 73

The GUI is based on HTML5 as illustrated in Figure 17 and therefore shows a nice visual graphic interface

for the user. It further allows abstracting the complexity of the device configuration by providing graphical

illustrations.

2.4 Heterogeneous TTNoC Architecture

The main focus of TUW in the last reporting period were integration capabilities of the architecture

described in D4.3, D4.4, D4.5, D9.1 and D9.3. It is heterogeneous many-core architecture implemented on

top of a hybrid SoC platform. In particular, for the purposes of the project we used an Arria V SoC

development board (see Figure 18). Three basic components of a hybrid SoC platform are: hard processing
subsystem, FPGA and interconnect. We identified a number of ways how to utilize advantages of such

architecture in mixed-criticality environments.

Figure 18: Arria V SoC Development Board and Block Diagram of the Architecture

The main focus in the last period was to finalize the architecture and test basic functionality. We

experimented with tool integration process, fault tolerance, scalability, and modular design.

Figure 19: Heterogeneous TT MPSoC architecture

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 27 of 73

An arbitrary version of the architecture includes five many-core components designated as µComponents,

four of which are based on Nios 2 processing units and single ARM component that occupies both HPS and
FPGA. Figure 19 provides an overview of the current layout and its integral parts. Each component was built

using generic template which can be configured according to needs of an application.

A major challenge for such architecture and its usability is a tool integration and ability to automate design
process. One of the goals in the project was to explore this topic and identify the possibilities for an

automated tools that integrates whole process from hardware design to the application. This would include:

 A component design, with implementation of the processing unit and its properties (e.g., type of the

core, frequency, interrupts, memory management etc.), memory hierarchy and peripherals.

 Further, it considers TTNoC configuration, routing tables, global time settings and external

synchronization.

 Application mapping and communication schedules.

Other important aspect of our work was on fault tolerance capabilities of the platform and the synergy with

TTNoC architecture. Some of the important aspects are reconfiguration capabilities on the platform level.
The ability to reprogram or reconfigure HPS and FPGA in case of fault or an error occurrence.

The simple architecture presented above is uses very few resources on the FPGA. The implementation
presented in Figure 19 uses about 12% of the FPGA logic elements, 22% of block memory bits and 12% of

pins. This platform is capable of hosting a much larger architecture and also the architecture can be

implemented on a cheaper lower end platform as well. However, it is fair to say that in order to establish
higher performance capabilities the components must be equipped with larger memory and higher frequency

processing units.

In our evaluation of applications for space above mentioned properties could be highly beneficial. Especially
the fault tolerance aspect of the work and the heterogeneous design principle of the design, as additional

more dedicated components could be integrated in addition. The work related to the architecture has been

also published in (Haris Isakovic, 2016).

3. MPSoC Software and Tools for Space

A space domain application based on a real example has been designed and evaluated with the tool suite
art2kitekt. Both software and hardware elements have been modeled and analized with the tool. In tight

collaboration with TASE, the tool suite art2kitekt has been developed and adapted to guide the engineer

through the steps of system design and analysis for a space domain task.

Following an agile methodology for the tool suite art2kitekt software development, since October of 2016,

which was the deadline for deliverable D9.5, a new internal release has been reached. Next the main

achieved targets are listed:

 17.04 – 9th internal “release:

o Stage System Analysis: Sensitivity analysis has been integrated with RTA to provide

useful information for changing the system model, by giving a measure of those computation

times that must be reduced to achieve feasibility, those that can be increased, or by providing

the range of feasible periods for selecting the proper task activation rates.

o Stage Code Generation: New functionality added to automatically generate source code in C

language for RTEMS platform support.

o A new stage named “Deployment Model” has been designed, implemented and integrated

into art2kitekt to better organize the input data and the results provided by the tool suite.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 28 of 73

Task and flow allocation to available hardware can be now perfectly separated from the

platform and application models.

Nevertheless, development of the tool suite art2kitekt has not finished and other interesting features will be

added in the near future:

 Next 17.xx releases:

o Stage Application Model: Support in the data model for mixed criticality tasks.

o Stage System Analysis: An RTA improvement to tackle with “mixed criticality” tasks.

o Stage System Analysis: New feature in the RTA to enable task assignment to different

processors.

3.1 Application of EMC2 technical developments

From WP02 “Executable Application Models and Design Tools for Mixed-Critical, Multi-Core Embedded

Systems”, and specifically from Task 2.4 “Code generation and offline analysis tools”, the tool suite

art2kitekt has been further developed and adapted with UC 9.2 and thus to space domain requirements. Once

more, valuable feedback has been provided to the art2kitekt tool suite development in different aspects as:
analysis algorithms requirements, usability tips, source code examples to automate code generation.

A multi core platform from the space domain context has been modeled for evaluation purposes. Then, an

application composed by an example task set has been also modeled. After that, with the RTA algorithm
offered by the system analysis stage, tasks and flows have been mapped to the corresponding cores of the

execution platform in a way that system feasibility is guaranteed. Finally, with the code generation stage, a

low-level skeleton of the source code is automatically generated and prepared to run in a RTEMS operating
system.

Thanks to the new stage known as “Deployment Model”, flows can be manually assigned to available

hardware resources. For example, in the next figure it can be seen that the flow “F10 internal interface”

composed of two tasks has been modeled to be executed into the “LEON” core.

Figure 20: Stage Deployment model - Allowed elements

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 29 of 73

This information is codified into the data model with a new entity which allows decoupling platform

hardware from application software at the modeling phase.

Figure 21: Deployment model - Execution constraints

Then, every piece of information of this kind is labelled as an “execution constraint”, and all these
constraints are listed and attached to their corresponding tasks and flows.

Figure 22: Deployment model - Task partition

Once a partitioning algorithm has been executed, it will be obtained a complete allocation of flows and tasks
to available hardware resources as it can be seen in the previous image. In this example, a “One To One”

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 30 of 73

allocation algorithm has been selected. At the right panel a final scheme of the task partition is shown after

the allocation performed by the algorithm which has taken into account the predefined execution constraints

to compute a full allocation of all the tasks and flows to the available hardware.

3.2 Detailed description of the application and the use case

Both execution platform and the application software have been modeled in their corresponding stages,

manually mapping some flows to specific processors at the “deployment model” stage. Different versions of

the Response Time Analysis algorithm are provided in order to balance load among processors, or to
minimize the number of required processors.

Thanks to the sensitivity analysis, if a design error is found with a given analysis, the tool suite suggests a

change in the application model parameters in order to achieve a feasible task set for the current execution
platform and application model co-design.

Next a brief summary of the actions performed at each stage to complete a full cycle of modeling, design,

analysis and code generation is presented to give simple idea of the steps required to design and validate an

embedded real time system:

3.2.1 Platform Model description

A reduced set of hardware devices and its corresponding parameters can be modeled for each

execution platform at the so called Platform Model stage. A compact graphical representation of the
modeled platform is shown to the user as an intuitive linked graph. This functionality is shown at the

“Board Model“ panel and is aimed to easily found any hardware component incompletely defined,

with no link to other components.

3.2.2 Application Model description

Systems, Subsystems, Flows and Tasks can be hierarchically defined in order to model a task set at

the Application Model stage. As an example, a snapshot of a flow defined to model the UART

utilization into the “Satellite“ Use Case it is shown, where several flow parameters have been
defined as <Period>, <Deadline> and <Priority>. Besides, a manual mapping of the <Processor> has

been assigned.

3.2.3 Deployment Model description

Input data and the results provided by the tool suite are now better organized. Task and flow

allocation to available hardware can be now perfectly separated from the platform and application

models. Several task partitioning algorithms can be run to establish which software should be

executed into each available hardware resource.

3.2.4 System Analysis description

The engineer is able to specify the kind of system analysis she wants to perform. It is also possible to

interact with the tool to fix any issues that makes the system unfeasible. The implementation of these
analyses is fast enough to be executed “on the fly”, so the user can easily test several possible

conditions and see the result immediately.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 31 of 73

Figure 23: Code generation - RTEMS example

3.2.5 Code Generation description

Use Case 9.2 demonstrator had previously used a manually written example of RTEMS code in

order to help with the automatic code generation development. Currently a new functionality to

generate an automatic version of the RTEMS source code is avialable.

In the previous figure, source code has been automatically generated for a RTEMS target platform. It is just a

simple example that fulfills the purpose of demonstrationg the potential of this feature in order to help the

engineer in the process of HW and SW codesign. It is a feuture currently available from the web user
interface of the art2kitekt tool suite.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 32 of 73

4. Optical Payload Applications

4.1 Integrasys Satellite Communications Link Emulator

In this section it is found a description of Integrasys‘ Satellite Communications Link Emulator Demonstrator

structure, results and the derived conclusions.

4.1.1 Structure

Integrasys‘ Satellite Communications Link Emulator for multicore platforms can monitor the quality of the

transmitted carriers, check the status of the channel and track the potential interferences which degrade the
performance of the service. We have incorporated parallelisation techniques for multicore platforms which

improve the performance of the signal processing application running in the emulator.

Below one can find a block diagram of the whole emulator.

Figure 24: Satellite Communications Link Emulator Block Diagram

The emulator comprises the three main elements of a communications link:

 Transmitter

 Channel

 Receiver.

The Geobeam tool allows modelling a satellite communications network, with all the elements that are part

of it, to achieve network planning and performance results. In the Emulator, GEOBEAM configures the link
parameters and sends those parameters via a Socket connection to the UHD (USRP Hardware Driver), which

communicates with the USRPs.

The hardware used to trasmit and receive the electromagnetic signals to simulate the carriers is the USRP
B200 Software Defined Radio from Ettus Research.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 33 of 73

The Vectorsat Server receives and processes the signal measurements from a RF device driver (in our use

case, the USRP) and process all of them before sending them for visualization to the Vectorsat Client.

Therefore, this module let us demodulate, visualise and analyse the signal that we have received on the
second USRP, after having been modelled and sent with the first USRP.

4.1.2 Operation

We have performed several tests with the Satellite Communications Link Emulator in single core and

multicore platforms to compare the improvement achieved when using more than one core. In this section we
will summarize the test setup and the results achieved.

4.1.2.1 Test setup

For the tests we have used the following equipment:

 1 Transmit USRP B200

 1 Receive USRP B200

 1 laptop for the GEOBEAM configuration module and connection to the USRP transmitter

 1 single core platform for connection to the USRP receiver and evaluation of the receiving

algorithms on a single core machine

 1 Intel Core i3 dual core platform for connection to the USRP receiver and evaluation of the

receiving algorithms on a dual-core machine.

 1 Intel Core i7 quad core platform for connection to the USRP receiver and evaluation of the

receiving algorithms on a quad-core machine.

Below, you can see a picture of a typical setup for one of the tests we performed.

Figure 25: Application Test Setup

4.1.2.2 Test results

We transmitted typical RF signals with the first USRP and in tests we performed, the Vectorsat receiving
application running on single-core mode, was able to able to provide 10 to 12 traces per second on 512

points for the FFT (Fast Fourier Transform) of the signal received on the second USRP. Then, when

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 34 of 73

increasing the number of FFT points to 1024, performance decreased to 8 to 9 traces per second. These

figures are somewhat poor in cases where a space application would require high resolution or multiple

carrier support

On the other hand, the multi-core version running on dual and quad-core platforms, provided more than 20

traces per second (ranging from 25 to 28 traces per second), which makes more advanced and reliable

features like several carrier simultaneous monitoring possible. This is achieved with the support of OpenMP
to implement code parallelisation of the most costly signal processing operations for each core. Not all the

benefits come from parallelisation as in this process we also had to refactor the code to make it parallelisable

and follow some strategies in this line that made the code cache friendly.

In the following screenshots it will be shown a comparison between the resources monitor console results

when running the receive application on a single core and a multi core platform.

In the first screenshot, we can see how in single core mode the traces per second that are being processed are

around 10 (see upper left panel in blue and white).

Figure 26: Resources Results on Single-Core Version

In the second screenshot we can see how in multi-core mode, in this case with four cores in use by the

application, the figure is above 20 traces per second, therefore the improvement is clear.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 35 of 73

Figure 27: Resources Results on Quad-Core Version

In the end the results are quite promising: compared with the initial single core version we got 130% of

performance increase. The point is that the reduction of the computational costs for signal processing

algorithms is even more important when we have more signal points to process.

4.1.3 Derived conclusions

Using multicore platforms for our signal processing application has left us with a clear improvement in
performance and capabilities achieved. Obviously, the potential improvement is limited by the fraction of the

software that can be parallelized to run on multiple cores but we have seen how implementing parallelization

techniques for certain blocks of the signal processing code greatly increases the speed giving a much more
efficient application which allows for much higher resolution and additional features, such as multiple carrier

monitoring at the same time with less equipment that using the single core equivalent.

There are other derived benefits that can be proved from adopting multicore approaches in an application
such as lower power consumption working at the same clock rate as in the single core variant and

consequently less heat dissipation due to the lower energy used.

The disadvantages that we found were specially due to compatibility issues when trying to include third-

party signal processing libraries used in the receiver application, especially when we tested more inexpensive

and less widespread multi-core platforms.

4.2 MPSoC Video Processor for Earth Observation Instruments

Satellite image data compression is becoming important for new missions. Traditionally hardware

implementation (FPGA) has been selected in order to provide high performance image processor solutions.

As a result of the emerging multicores technologies it is possible to improve the software implementation
performance by using scalable software implementation.

In order to take benefit of the new processors technologies a software parallel implementation of an image
processor is presented. It consists on an image compressor based on CCSDS 122.0-B-1 standard for image

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 36 of 73

data compression and an image cryptographic algorithm (AES-256-CTR) based on CCSDS 352.0-B-1

standard. Several parallelization paradigms were analyzed in terms of complexity, performance and

portability. Finally, the OpenMP paradigm was selected and applied to Discrete Wavelet Transform, Bit
Plane Encoding and AES cryptographic algorithm (counter mode).

The AES cryptographic algorithm has been implemented in software instead of using the dedicated hardware

instructions available on the processors in order to port the implementation between several platforms.

4.2.1 Performance evaluation

In order to test the parallel version of CCSDS 122.0-B-1 and CCSDS352-B-1 a set of ARM multicore

hardware platforms have been used. Three platforms use a quad-core processor (RK3188, BCM2837 &

BCM2836) and the other one uses an octa-core (Exynos-5422). However the octa-core is based on

Heterogeneous Multi-Processing (HMP) solution. Therefore we will only use the most powerful processors
(quad-core Cortex-A15 @2GHz) in order to compare with the previous processors. Anyway, the differences

between cores in Exynos-5422 (Cortex-A15 @2GHz vs. Cortex-A7 @1.7GHz) introduce a small

improvement in terms of performance when we compare the speedup between four cores (Cortex-A15) and
eight cores (Cortex-A15 & Cortex-A7).

The details of each hardware platform and linux kernel version are summerized in next table.

Hardware platforms based on ARM processors

The speedup obtained for each part of CCSDS 122.0-B-1 (DWT+BPE) can be seen in next figures.

Figure 28: Speedup for DWT+BPE with a 4000x4000 image (8bit) & Speedup for DWT+BPE for three image sizes

(8bits)

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 37 of 73

There are minor differences when the speedup is computed with three image sizes (1000x1000, 2048x2048

and 4000x4000)

The throughput improvement is summarized in next table.

DWT+BPE: Throughput (Mpixel/s) with a 4000x4000 image (8bit)

In a similar way, the speedup of AES CTR mode has been computed with a 64Mbyte data chunk. The AES
is a well suited algorithm for parallelization as can be seen in next figure where the scalability is close to be

linear.

Figure 29: Speedup for AES CTR mode

The throughput of AES for each hardware platform is summarized in next table.

Figure 30: AES: Throughput (Mbyte/s) with a 64Mbyte data chunk

The scalability variation between processors for AES (linear) and DWT+BPE (nonlinear) reveals the

dependency between the problem (algorithm) and the hardware architecture.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 38 of 73

5. Use Case Platform Applications

5.1 Introduction

Multicore processors will be a key technology in the development of the next-generation of mini and micro

satellites. In fact, these systems have stringent requirements from the point of view of size, weight and power
consumption. The use of multicore platform allows to obtain a higher processing capability with lower

footprint and energy requirements. Multiple software function can be allocated to the same processing

element, avoiding the use of different boards based on a single-core dedicated processor.
In the context of task T9.4, TASI and Univaq investigated the possible advantages and drawbacks in using

multicore processors for the development of satellite platform applications. Specifically, the possibility of

using a single multicore platform to allocate different platform functions (telecommand and telemetry
management, peripheral management, file transfer management etc.) has been considered. Since the different

platform functions have different insurance level, proposed system shall be considered as a mixed criticality

system.

The following critical issues have been considered:

 Resource partitioning: multicore processors are inherently characterized by an high degree of shared

resources (system buses, memory bus and controller, shared cache memories, peripherals and logical
units, etc.). This can lead to several problems in the case of hard real-time requirements, since the

contention in access to shared resources may compromise the temporal determinism. Appropriate

strategies in the management of access to resources and scheduling are therefore necessary.

 Isolation: a mixed-criticality system requires a strict isolation among functionalities with different
criticality levels, both from the spatial (i.e. the access to the various resources) and temporal point of

view (i. e. the execution times).

Virtualization appears as a feasible solution to guarantee both isolation and resource partitioning: in a

virtualized environment, multiple application are able to run in isolated containers (virtual machines) and

platform resources, as well as execution time, can be statically assigned to each single partition.

The task had the following specific goals:

 To evaluate multi-core platform for the aerospace domain, with specific reference to the Gaisler

LEON4 based multicore platform.
 To evaluate the feasibility of virtualization-based software architectures and carefully benchmarking

the performances of different hypervisors. SYSGO PikeOS e FentISS XtratuM have been considered

as interesting solution for the aerospace domain.
 To implement a satellite prototypal platform based on the selected multi-core processor and

hypervisors.

This document reports the final results of the analysis and details the development of the satellite platform

prototype. Specifically:

 The quad-core Leon4 processor is analysed with specific reference to isolation support.

 The two hypervisor are analysed and benchmarked with respect to relevant metrics for the
application scenario.

Proposed prototypal platform is described and implementation details are reviewed and analysed.

5.2 Target Hardware Platform

As detailed in Deliverable DL9.2, LEON4 processor has been selected as reference architecture for the

implementation of the prototypal platform.

LEON4 is a 32 bit, SPARC-v8 compliant microprocessor representing the 4th generation of the LEON

family, a widely adopted architecture in avionics and aerospace applications. The LEON4 processor,

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 39 of 73

promoted by the European Space Agency (ESA) and developed by Cobham Gaisler, is a candidate to be the

next-generation microprocessor for satellites. The LEON4 is the basis of the radiation-hardened GR740 SoC,

whose flight models are expected to be available within Q3 2018.
LEON natively supports multicore architectures, both in symmetric (SMP) and asymmetric multiprocessing

(AMP). Moreover, the processor supports a wide range of peripheral devices providing additional processing

and communication capabilities (for example, SpaceWire codecs and routers are directly supported by

Gaisler).
A quad-core LEON4 configuration, as schematized in Figure 1, has been considered as a valid reference

architecture for proposed application.

Figure 31: Simplified view of the Gaisler Leon4 processor

Two Cobham Gaisler development boards have been considered for this study, both mounting a quad-core

LEON4 SoC, but implemented with different technology: GR-CPCI-LEON4-N2X [1] and GR-CPCI-XC4V
on GR-RASTA avionics development platform. The following table details the relevant characteristics of the

two boards.

Table 3: Overview of the target boards relevant characteristics

 GR-CPCI-LEON4-N2X GR-RASTA-LEON4

Technology eASIC Nextreme2 XC4VLX100-10FF1513C

Xilinx Virtex 4 FPGA

Device ID / Build ID 0x280 / 4114 0x280, 0x281 / -

CPU 4 x LEON4

(No protection of L1 cache

and register files)

4 x LEON4

(Protection of register files and

L1 cache)

FPU 2 x GRFPU
(shared per CPU pair)

4 x GRFPU
(one per CPU)

CPU,FPU clock 150 MHz 45 MHz

Level-1 (L1) cache I: 4x4KiB, D: 4x4KiB I: 4x4KiB, D: 4x4KiB

Branch prediction Yes Yes

Memory Management Unit Yes Yes

Shared Level-2 cache Yes Yes

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 40 of 73

Level-2 cache size 4 x 64 KiB
256 KiB total

4 x 128 KiB
512 KiB total

The architecture of the SoC reflects the one schematized in Figure 1. It includes a shared AMBA AHB bus

with two level of cache memories, a private L1 data & instruction cache and a shared L2 cache. The

processors communicate with the peripheral devices by means of various bridges towards additional AMBA
buses. High speed peripherals, like SpaceWire routers and Ethernet Controllers, are connected to an

additional AHB bus by means of a AHB bridge.

As said, a relevant problem of multicore processing architectures is the presence of shared resources. The

LEON4 data path includes three main potential source of interference: the AHB bus, the shared L2 cache and

the central memory. Specific care shall be put in avoiding contention in accessing the shared resources.

LEON4 provides several mechanisms supporting isolation and predictability. For example: IOMMU: the

IOMMU is able to map the device virtual DMA addresses to physical addresses. Moreover, it provides

additional memory protection from peripheral ready and write operations. L2 cache partitioning: the LEON4
L2 cache supports a master-index mode in which one L2 cache way is assigned to each core, avoiding

contention interference between cores.

5.3 Analysis and Benchmarking of the XtratuM and PikeOS Hypervisors

Different hardware and software solutions can be considered in order to guarantee space and time isolation

between the different components of a mixed criticality software. Virtualization has been selected as a

feasible technique to guarantee time and space isolation and resource partitioning. Two different hypervisors
have been analysed on the target multicore hardware platform. The following sections details the analysis

and benchmarking of the two selected software solutions:

 SYSGO PikeOS version 3.5 for SPARC v8 [3].

 FentISS XtratuM version 4.2.1 for LEON3/4 [4].

5.3.1 General architectural considerations

PikeOS is a real-time operating system able to provide paravirtualization services. As represented in figure 2,
the PikeOS architecture is structured in four layers:

 Architecture & Platform support package: the lower layer of the PikeOS hypervisor, this two

modules encapsulates respectively the details of the underlying CPU architecture and of the overall
hardware platform. ASP and PSP offers a set of standard software interface for the execution of the

PikeOS kernel on a specific platform.

 PikeOS kernel: a separation kernel supporting real time performance. PikeOS is based on a
microkernel architecture directly inspired by the L4 kernel specification. The PikeOS kernel support

tasks (virtual address spaces), threads (execution entities), thread scheduling and inter-thread

communication. A Memory Management Unit is required in order to support a separate memory
space for each task.

 PikeOS System Software, i.e. a module supporting various standard services (start-up of

applications, file systems) and providing the partition abstraction. The PSSW is responsible for the

creation of partitions and threads at boot time. The system configuration is stored in a dedicated
database, the Virtual Machine Initialization Table (VMIT), specifying the partitions, their resources

and access & control rights. PikeOS do not support dynamic process creation and the system

configuration is statically specified in the VMIT.
 Partitions layer: a partition is an isolated set of applications executed under the predefined

configuration specified in the VMIT. It should be noted that applications are able to use both PSSW

API and system calls of the PikeOS kernel.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 41 of 73

Figure 32: Schematization of the PikeOS hypervisor architecture

XtratuM is a bare metal hypervisor supporting paravirtualization. Originally developed as a Loadable Kernel
Module for the Linux kernel, it evolved to a standalone software and has been ported to multiple

architectures. XtratuM natively supports the SPARC architecture and LEON processors.

Figure 33: Schematization of the XtratuM hypervisor architecture

Figure 3 represents the architecture of the XtratuM hypervisor. The following elements are included:

 XtratuM kernel: a monolithic, non-preemptable kernel executed in the supervisor mode of the target

processor. The kernel supports the virtualization of the hardware platform (i.e. the CPU, memory,
interrupts, and critical peripherals), partition scheduling, inter-partition communication and health

monitoring.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 42 of 73

 XtratuM Hypercall Interface, i.e. the set of hypercalls used to access the paravirtualized services

supported by the hypervisor.

 Partitions, i.e. the isolated execution environments. Like PikeOS, partition code has to be
paravirtualized in order to run on top of the hypervisor. XtratuM do not support any native form of

concurrency inside a partition.

5.3.2 Time management

In the standard configuration for the SPARC architecture, PikeOS timing is based on a system tick (periodic

ticker mode) used for application timeouts, partition scheduling and system time-base. The PSP can be

extended in order to support a tick-less mode (dynamic ticker mode), reducing the overhead of periodic tick
handling and providing a finer time granularity. Moreover, dedicated hardware timers (if available for the

platform) can be used for partition scheduling and system time-base, as well as for dedicated application

level functionality (in this case, partition will require the access to the device and a dedicated device driver).

XtratuM adopts a different approach, virtualizing the hardware timer and providing two dedicated virtual
timers to a partition:

 Virtual timer based on global clock, i.e. a timer based on the hardware clock.

 Virtual timer based on local clock, i.e. a timer based on a partition local time. This time only
advances when the partition is actually running.

5.3.3 Performance considerations

Different metrics have been considered for the characterization of the hypervisors performance. In order to
motivate some of the design choices detailed in the final section, the analysis of inter-partition

communication mechanisms is detailed here.

In a virtualized environment, the different partitions are able to communicate, exchanging data and

messages, only by means of the services provided by the hypervisor. Both PikeOS and XtratuM supports two

different mechanisms for inter-partition communication:

 Messaging via sampling and queuing ports: this mechanism, directly inspired by the ARINC 653

specification, allows a message exchange between two different partitions by means of a specific

communication primitive (a channel between the two partitions) statically defined at design time.
Queuing ports define a FIFO style interface, whereas a sampling port only supports the storage of a

single message (and an optional timeout for the validity of the message).

 Shared memory, i.e. a memory area accessible by two (or more partitions). The base address and size
of the memory area shall be defined at design time. PikeOS also allow to define specific access

rights for the memory area.

In the case of port based communication, the hypervisor is responsible for the encapsulation and transport of

the message from the sender to one (or more) receiver partition.

In order to measure the overhead of sending and receiving messages using sampling and queuing port, a

simple benchmark application has been defined. As illustrated in the following figure, two partition have
been defined, a writer partition and a reader partition. The first partition is programmed to send a test

message of 20 bytes length, and then become inactive. The second partition is programmed to receive the

message.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 43 of 73

Figure 34: Inter-partition communication test setup

The following table reports the test results in the case of communication based on queuing ports and L2

cache disabled.

Table 4: Queuing port performance comparison, L2 cache disabled

Send time [us] Receive time [us]

Pikeos 1711 1712

XtratuM 191 202

The following table reports the results of the same test with L2 cache enabled.

Table 5: Queuing port performance comparison, L2 cache enabled

Send time [us] Receive time [us]

PikeOS 622 620

XtratuM 97 96

The following table reports the test results in the case of communication based on sampling ports and L2
cache disabled.

Table 6: Sampling port performance comparison, L2 cache disabled

 Send time [us] Receive time [us]

PikeOS 1858 1864

XtratuM 149 199

The following table reports the results of the same test with L2 cache enabled.

Table 7: Sampling port performance comparison, L2 cache disabled

Send time [us] Receive time [us]

PikeOS 672 675

XtratuM 73 99

A similar setup has been evaluated in the case of communication based on shared memory (figure 5).

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 44 of 73

Figure 35: Shared memory performance test setup

The following table reports the test results.

Table 8: Shared memory performance comparison

Write time [us] Read time [us]

PikeOS 26 26

XtratuM 18 17

5.3.4 Consideration on the development of device drivers

PikeOS supports different strategies for the implementation of device drivers:

 Kernel mode device driver: this type of driver is implemented as part of the PSP and executed in
supervisor mode. The driver is able to directly access the hardware resources, use dedicated kernel

services and perform locking on a multicore platform.

 User mode device drivers: implemented as user level applications or PSSW extension, this type of

drivers are executed in user mode and are thus preemptible. In this case, memory mapped device are
directly mapped to the application virtual address space, whereas interrupts are managed using

systems interrupt handling APIs.

XtratuM only supports partition level device drivers, and access grant to the peripheral devices shall be
statically granted to the partitions. This partition will have direct control over the peripheral memory address

space and is in charge of properly handling the device.

Kernel mode device drivers offers a better performance with respect user mode device drivers, but requires
the driver to run in supervisor mode. Thus, the driver should guarantee the same level of insurance of the

hypervisor itself (in real world scenarios, it should be certified at the same level of the hypervisor).

Nevertheless, in the case of PikeOS hypervisor the use of kernel mode device drivers has been considered for

the final implementation due to notable performance limitations of the user mode mechanism natively
provided by the hypervisor. As a reference, the following table details the time for reading and writing a 20-

byte message in the case of an UART device.

Table 9: UART driver performance in PikeOS, kernel mode vs. user mode driver

Write time [us] Read time [us]

User Mode Driver 1603 688

Kernel Mode Driver 60 65

5.3.5 Re-use of legacy code

As said, the possibility of re-using legacy code is an important feature of virtualization. Both XtratuM and

PikeOS allows legacy application to run inside isolated partitions, facilitating the porting to the new
hardware platforms.

The possibility of code re-use has been verified by integrating into a dedicated partition a legacy software for

the management of a Star Tracker device. The software was originally developed for a single-core, LEON3

based system and is capable of managing the various sensor functionality and process the measured data.
The Star Tracker interfaces over a SpaceWire link, and the control software shall be able to communicate

over this interface. The following figure represents the integration of the software inside a virtualized

partition environment:

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 45 of 73

Figure 36: Integration of a legacy Star Tracker management software in the virtualized environment

As illustrated, the integration of the STT management software required the development of a dedicated

wrapper providing the following paravirtualized services:

 Low level access to the SpaceWire interface: as detailed in the previous section, access to physical
devices requires the use of dedicated hypervisor services and hypercalls. A legacy software shall

then be adapted in order to exploit these services, by modifying or wrapping every access to the

peripheral memory space.

 Timing functionalities: the integration of the STT software required the adaptation of timing related
functionalities, whose implementation has been based on timing services provided by the

hypervisor.

5.3.6 Isolation related features

Both hypervisors supports time and space partitioning. Specifically, they allow to define:

 A set of partitions, i.e. isolated container or execution environments for the various applications.
Each partition has access to a specific set of resources, statically defined at configuration time.

 A periodic cycle used to schedule the various partitions over time. A partition is able to run only in

specific time intervals, statically defined at configuration time by means of the periodic cycle
specification.

With specific reference to the multicore scenario, PikeOS maintains a single major time frame, shared by all

the CPUs and periodically repeated throughout the operations. PikeOS distinguishes the concepts of resource
partitions and time partitions, and different resource partitions can belong to the same time partition (in this

case, resource partitions are scheduled by priority).

XtratuM allows the definition of a different cyclic plan for each CPU of the multicore platform. The basic

scheduling unit of a multicore scenario is the so-called virtual CPU, and two scheduling policies are
supported: cyclic scheduling, in which partitions are scheduled in a fixed, cyclic fashion, and priority

scheduling, in which partitions are scheduled on the basis of partitions priority.

With respect to the detailed platform isolation-related features:
 LEON4 IOMMU is natively supported by the XtratuM hypervisor, whereas PikeOS SPARC PSP do

not include a native support for IOMMU.

L2 cache management and configuration is not supported by the two hypervisors.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 46 of 73

5.4 Prototypal Platform

A prototypal demonstrator representative of a simplified satellite platform has been implemented in order to

evaluate the performances of the proposed approach. Specifically, designed system aims to model:

 the satellite’s telecommand and telemetry function.
 the management of peripheral devices.

 the management of large file transfers.

 the execution of legacy STT code.

Proposed functionalities are simplified version of actual satellite functions: from PUS standard based
Telecommand & Telemetry management, Satellite Housekeeping, Attitude & Orbit Control, Mass Memory

Management etc. The prototypal platform has been described in details in deliverable DL9.4, and is

schematized in the following figure.

Figure 37: Proposed demonstrator setup

As said, the LEON4 multicore processing platform is based on a COTS board (Cobham-Gaisler GR-CPCI-

XC4V or GR-CPCI-LEON4-N2X) including a quad-core LEON4 processor. The board acts as a satellite
Platform Control Computer and execute the reference Command & Data Handling application software.

The following communication interfaces are used:

 SpaceWire bus as the main communication interface. Selected reference platform support SpaceWire
communication by means of an 8-port SpaceWire router.

 Ethernet interface as secondary communication bus.

 Serial interfaces, used as a standard interface for communication and debug

A Test Console manages the Leon4 platform, sending telecommands, receiving telemetries and uploading
and downloading data according to predefined traffic profiles. The serial port acts as TCTM interface for

transmission and reception of telecommand and telemetries. Remote terminals and peripherals communicate

over the SpaceWire Network, and by means of the Ethernet interface.
The system is able to manage different types of peripheral devices. Proposed setup includes both generic

Remote Terminal emulators (useful to verify test communication links and verify predefined communication

patterns) and actual satellite components. A Star Tracker device is used to analyse the performance of the

platform with respect to real world applications and to show the hypervisor capabilities in reusing legacy
code.

Figure 9 show a logic schematization of prototype software. The following components are included:

 I/O Management: a component in charge of managing access to peripheral devices and guaranteeing
the correct timing of the various transactions.

 TC & TM Management: a component in charge of managing telecommands and telemetries. This

component will receive from the I/O manager the telecommands sent to the platform, check their
correctness and forward them to their destination components.

 STT Management: a component in charge of managing a Star Tracker device, receiving and

processing its data and generating the correspondent command sequences. This component is based

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 47 of 73

on a legacy management software, as described in section 3.5. The TCTM manger is able to forward

to this component the commands received from the test console.

 Large File Transfer Management: a component in charge of managing large file transfers between
different I/O interfaces (accessed by means of the I/O manager). The TCTM manger is able to

forward to this component the commands received from the test console.

Figure 38: Prototype software logic schematization

Detailed components are characterized by different criticality levels, as resumed in the following table
(higher level correspond to higher criticality):

Table 10: Criticality levels for the various software components

Criticality Level Components

3 I/O Management

2 STT Management, TC&TM management

1 Large File Transfer Management

5.4.1 Design details

As said, all software components rely on a I/O management component to access the external devices. This

component includes two different sub-components:
 A Transaction Router, handling the RMAP requests coming from the different on-board software

entities, and forwarding them to the Spacewire interfaces (by means of the I/O Scheduler).

 An I/O Scheduler, forwarding the data provided by the device interfaces and taking care of timing
requirements.

The I/O Scheduler, implemented as a table-driven cyclic executive, is able to manage the access to the

various interfaces in a strictly deterministic way. This component supports three different transaction
typologies: high priority transactions with hard real time requirements, medium priority transactions with

soft real time requirements and low priority transactions, with no specific real time requirements. The

management of different transaction priorities has been already detailed in deliverable D 9.5.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 48 of 73

The scheduler defines:

 A series of elementary frames (bus time slots), each one dedicated to the management of one or more

transaction.
 A major cycle, constituted by the succession of the various bus time slots and cyclically repeated.

Figure 39: Major and minor cycle for the I/O Scheduling

As said, the scheduler is table driven: the operations to be executed in each Bus Time Slot are statically

defined at design time.

The following figure specifies the implementation of the telecommand & telemetry management and its
interaction with the I/O management, detailing the various sub-components involved.

Figure 40: Logic schematization of the Telecommand & Telemetry management function

The Telecommand & Telemetry component include the following sub-components:

 TCTM Manager: in charge of managing all the telecommands received from the test console and of
generating and sending the platform telemetries. This component also manages the activity of the

Cyclic Transaction Manger.

 Cyclic Transaction Manager: in charge of periodically acquire values and generate telemetries from
peripheral devices.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 49 of 73

Both sub-components are able to send request to SpaceWire remote terminals using the RMAP

communication protocol.

The different sub-components communicates by means of message passing channels, implemented as FIFO
queues, and shared memories areas, statically defined at design time.

Specifically:

 The TCTM Manager is able to receive telecommands and send back telemetries communicating with

the I/O Scheduler by means of dedicated communication channels.
 Each component managing RMAP request will have one sending channel and one receiving channel

connected to the Transaction Router.

 The I/O Scheduler allows to manage the different priority levels and timing by exposing multiple
communication interfaces to the Transaction Router. Specifically, the (n,k) channel will be

associated to the transactions over n-th interface, scheduled to the k-th time slot.

 The Cyclic Transaction Manager will store the periodically acquired data inside a shared memory

area (Telemetry Buffer), that will be read by the TCTM Manager.

The following figure specifies the implementation of the Star Tracker management function and its

interaction with the I/O management, detailing the various sub-component involved.

Figure 41: Logic schematization of the Star Tracker management function

As schematised, a single sub-component is in charge of STT management. The STT manager is able to

periodically read the device data and generate the related command sequences. The user can manage the sub-

component by sending telecommands, that are preliminarily checked and forwarded by the TCTM over a

dedicated message buffer (STT_TC_FWD). The sub-component is also able to process the sensor data and
generate related telemetries. A dedicated telemetry storage area is used to store generated telemetries, which

are read and sent back to the console by the TCTM.

The following figure specifies the implementation of the Large File Transfer management function and its
interaction with the I/O management, detailing the various sub-components involved.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 50 of 73

Figure 42: Logic schematization of the Large File Transfer management function

A dedicated sub-component is in charge of Large File Transfer management. This object is able to query

data from one of the interface and forward them to another interface, and is allowed to continuously perform
background (low priority) transactions. The sub-component is managed by means of dedicated

telecommands, preliminarily checked and forwarded by the TCTM over a dedicated message buffer

(LFT_TC_FWD).
Table 9 details a reference timing specification or the various sub-components:

Table 11: Reference timing for the proposed prototype platform

 Period [ms]

TCTM 125

Cyclic Transaction Manager 125

STT Manager 125

Large File Transfer 125

Transaction Router 125

I/O Scheduler 7.8125

5.4.2 Hypervisor-based implementation

A preliminary allocation of the various modules to different partition has been obtained by mapping the

different modules to different partitions, each one accessing a specific set of dedicated resources, statically

allocated by means of the hypervisor services.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 51 of 73

Figure 43: Hypervisor based implementation of the proposed software

As described in DL9.5, the various software sub-components have been implemented as periodic tasks,

adopting a scheduling policy directly inspired by the ADA Ravenscar profile model. The following figure

shows the generic task execution model.

Figure 44: Generic task execution model

Each task is characterized by:

 A job, consisting in the activities to be performed.
 An initial activation time, statically defined by design. The task will start to execute its job for the

first time at this specific instant.

 A period, i.e. the interval between two successive task activation.

 A priority, which determine the scheduling of the various tasks.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 52 of 73

Each task will have an execution deadline, as it shall complete the job before its next activation time. If a

task misses its deadline, a software-based recovery action is triggered. A task is created and started using the

specific hypervisor’s functionalities. It is assumed that each task is able to complete the initialization phase
before its initial activation time.

Figure 45: Mapping of the various software component on different CPUs with different partitions

Figure 15 schematized the detailed allocation of the various sub-components, per criticality and CPU. The
following design choices have been made:

 Different components have been statically mapped to different CPUs.

 Different sub-components have been mapped to different criticality levels.

The following requirements have then been enforced:

 Only sub-components with the same criticality level shall compete for accessing the platform shared

resources.
 Only the I/O scheduler is enabled to access the external devices.

 Component at the lowest criticality level are only enabled to execute background transactions.

5.4.3 PikeOS specific approach

The following figure schematizes the implementation of the reference software using the PikeOS hypervisor.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 53 of 73

Figure 46: PikeOS based implementation of the proposed software

The following design choices have been made for the development of the PikeOS based version of the
application:

 Mapping of different sub-components on single-task, single-thread PikeOS applications. The

specific sub-component implementation reflects the behavior detailed in Figure 14.

 Use of custom inter-partition communication mechanisms. This has been motivated mainly by the
application performance requirements.

 Implementation of kernel-level device drivers, in order to improve the system responsiveness.

5.4.4 XtratuM specific approach

The following figure schematizes the implementation of the reference software using the XtratuM

hypervisor.

Figure 47: XtratuM based implementation of the proposed software

The following design choices have been made for the XtratuM-based development:

 Development of a custom partition-level tasking abstraction for multitask partitions.
 Use of native inter-partition communication mechanisms.

 Use of partition level device drivers.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 54 of 73

5.5 Conclusions

TASI and Univaq activity for Task T9.4 focused on the analysis and benchmarking of a multicore processing

platform based on Gaisler Leon4 processor, and of hypervisors and paravirtualization as a feasible solutions

supporting the development of a prototypal avionic software. Two different hypervisors have been analysed
and tested, SYSGO PikeOS and FentISS XtratuM.

The study allowed to compare the different software solutions and to analyse the performance of Leon4

processor. Specifically, the following results have been achieved:
 Development of a Platform Support Package for the PikeOS hypervisor on quad-core Leon4

processor;

 Development of UART and SpaceWire drivers for the PikeOS hypervisor, both in the user mode
version and kernel mode version.

 Development of UART and SpaceWire drivers for the XtratuM hypervisor (user-mode version only,

as XtratuM does not support the integration of kernel-mode drivers).

 Analysis and benchmarking of hypervisor performances, with specific focus on device driver
performance and inter-partition communication.

 Analysis of legacy software reuse by means of the integration of a Star Tracker management library

with the PikeOS hypervisor. The library was originally developed on the Leon3 processor.
 Development of a prototypal avionic software supporting Telecommand & Telemetry Management

and Large File Transfer Management.

 Development of a demonstrator based on mentioned hardware and software solutions. Integration of
the platform with peripherals and analysis tools.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 55 of 73

6. Radar Payload Applications

6.1 Algorithm Requirements for the HPEC Architecture Study Case

Modern Monitoring-&-Forecasting Geoscience-Services as well as Governmental-Operations for the

Homeland Protection (HP) demand an ever increasing performance of remote-sensing capabilities from

space. Accordingly the evolution of Spaceborne Radars (SBRs) proceeds at small, yet steady, steps towards
improvements in terms of Mission Aspects, Signal Processing Techniques, Payload Architectures, and

related (possibly blue product line) Enabling Technologies. More specifically future SBR Payloads

requirements are evolving in strict correlation to the trends in specific aerospace and electrical engineering
fields sprouting towards flexible, modular, interoperable, and cost-effective payloads subsystems.

The key concept for this strategy relies on tactics aimed at exploiting advanced Analysis, Simulation, and
Breadboarding activities for Knowledge Aided (KA) Designs and Distributed High-Performance-Extreme-

Computing (HPEC) digital architectures based on large and fast Shared-Memories. In particular Multicore-

Microprocessors should be aimed either at Job-Level Parallelism via multiple processors running

independent activities i.e. Multiple-Instructions-Multiple-Data (MIMD) or at Parallel Processing via multiple
processors running simultaneously the same activity i.e. Single-Instruction-Multiple-Data (SIMD).

Figure 48: High Level Block Scheme of SBR Payloads

This application paves the way for such SBR challenges providing proof-of-concept of the aforementioned

Distributed HPEC architecture based on a Large-Shared-Memory taking as a reference a preliminary and

scaled study-case for Onboard Raw-Data Acquisition for novel Multi-Channel Synthetic Aperture Radar
(SAR) High-Resolution-Wide-Swath (HRWS) modes comprising Elevation Digital Beamforming (DBF)

processing, Azimuth Multi-Channel processing, and Block Adaptive Quantization (BAQ) processing on

dummy digital inputs.

Multi-Channel

Superheterodyne

Radio Frequency

Tx/Rx Subsystem

Data Storage

Downlink

Transmission

Antenna Analog Beam-Forming Network

&

Active Electronics

SBR

Radiating Phased Array Antenna(s)

Spacecraft Platform

SBR MANAGEMENT

•Instrument Control

•Timing Control

Power Supply

Calibration

COMMON DIGITAL CORE:

•SAR

•RAR GMTI

•ELINT

•ALTIMETER

•SCATTEROMENTER

•RADIOMETER

•SOUNDER

•ECCM

•…..

•…..

Waveform

Generator
Echo

DigitizerUSO

Spacecraft

Computer

Payload

Data Handling &

Transmission

Spacecraft

Power

COTS Processor #1

…
..

Router

KA

Solid State

Mass Memory

COTS Processor #2

COTS Processor #N

VLSI Processor #1

…
..

VLSI Processor #2

VLSI Processor #N

UHF

L

S

C

X

Ka

Config

EEPROM
Shared

SDRAM

Calibration
RF Alarm

Measure

MMIC FRONT END

IF

IFOC

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 56 of 73

6.2 EMC2 Demonstrator Functional Requirements

A significant study-case has been selected to verify the design, implementation, and performance of an
EMC2 demonstrator as a representative of the EMC2 digital architectural core,

The digital breadboard accounts for a SAR instrument operating in a High Resolution Wide Swath (HRWS)

mode. The relevant requirements are defined in the following sub-sections.

This type of instrument and operative mode have been selected for the following reasons:

1. The required set of functionalities is characterized by a computational complexity resembling a
worst-case scenario suitable to verify the EMC2 demonstrator performance.

2. The architecture along with the algorithms are innovative in the frame of Spaceborne Radar systems.

3. The processing includes the Digital Beam Forming (DBF) technique which is one of the key on-

board functionalities for next-generation Spaceborne Radar systems along with Multibeam, Scan-
On-Receive, Moving Target Identificator, Multi-polarimetry and Side-lobe Nulling.

During the development phase, the available hardware resources, which might be limited because of budget

reasons, might not be sufficient to keep up with the requested computational effort. In this case, a reduced set
of functionalities shall be selected for the implementation and proper parameter scaling shall be applied in

order to cope with the actual HW capabilities. An assessment on the capabilities of the final EMC2

demonstrator configuration shall be expected.

6.2.1 HRWS Introduction

The HRWS SAR mode is based on a multi-static Spaceborne Radar concept that allows improving both the
azimuth resolution and the swath width during a continuous ground coverage in stripmap mode. This is an

evolution with respect to conventional monostatic SAR systems whereas the two features pose contradicting

requirements: a fine azimuth resolution requires a high Pulse Repetition Frequency (PRF), while a large

unambiguous swath requires a low PRF.

The HRWS technique allows overcoming this limitation by using two separated antennas for transmit and

receive functions:
- A transmit antenna having a smaller length l and height w compared to the receive antenna.

- A receive antenna having a larger length L and height W which is split into multiple sub-apertures, N

in the azimuth dimension and M in the elevation dimension, as schematized in next figure.

Accordingly, the subapertures receive the backscattered signal simultaneously. Each sub-aperture
comprises a different receive channel, whereby the received signal is frequency down-converted to

baseband and digitized by an Analog-to-Digital Converter (ADC).

Such a design allows obtaining the desired swath width and fine azimuth resolution. The former is in fact
unambiguously determined by the transmit antenna size for a given PRF while the latter can be obtained at

the same PRF by proper multi-channel sampling of the azimuth spectrum. The Azimuth DBF Processing

requirements are defined in the following section6.2.2.2

A DBF processing on receive is carried out in the elevation dimension in order to obtain multiple “pencil”

beams, steered in elevation while the signal is backscattered from the earth surface. This technique, called
Scan-On-Receive (SCORE), allows each resolution cell of the target area being illuminated with the peak

gain of the receive antenna, thus compensating for the smaller transmit gain as shown in next figure.

The elevation DBF processing requirements are defined in the following section.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 57 of 73

Figure 49: High Resolution Wide Swath (HRWS) SAR System.

Figure 50: Scan-On-Receive (SCORE) Technique

6.2.2 Functional Requirements

The requirements defined in the following sections will be verified either by test or analysis of the

demonstrator design as it will be specified on the related Test Plan Procedure document.

DRQ- 1: Digital Front-End

The digital processing architecture front-end shall match the receive antenna multi-aperture structure and

subsequent receive down-conversion channels configuration. It shall receive as input signals MxN Nbit-
digitized base-band complex (I+jQ) signals (i.e. Nbit bits for the I component and Nbit bits for the Q

component) .

The digital front-end configuration cascaded with the processing architecture are schematized in next figure

and coincides with the ARPA project paradigm. For the sake of simplicity MxN ADC’s are represented in

next figure, each sampling both the I and Q signal components.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 58 of 73

Figure 51: Digital Beam Forming (DBF) Processing Scheme for each Satellite Azimuth Position.

DRQ- 2: Input Data Characteristics

For each of the Naz satellite positions within the Radar synthetic aperture, the simulated backscattered signal

shall be fed simultaneously to the M x N demonstrator inputs.

Each digitized signal comprises Nr samples, where Nr indicates the number of range resolution bins forming
the echo signal with a SWL seconds duration. Accordingly, for each of the Naz synthetic aperture positions,

MxNrxN 2Nbit complex samples (i.e. Nbit bits for the I component and Nbit bits for the Q component) shall be

available for the subsequent processing. Numbers shall be represented in Two’s Complement.

DRQ- 3: Processing Flow

The processing flow shall be based on the following steps:

a. The processing shall start with the receive DBF in Elevation, implementing the SCORE

technique described in the previous section. The SCORE technique will be carried out at each

satellite position within the synthetic aperture. For each of the N sets of M elevation channels
the same “Elevation DBF Processing” shall be carried out on the relevant MxNr samples thus

outputting a unique Nr-samples complex signal.

b. The NxNr samples generated by the Elevation DBF Processing for each synthetic aperture

position shall be stored within the EMC2 demonstrator.
c. At the end of the Radar synthetic aperture, Naz memory data matrices of dimension NxNr shall

be available to carry out the “Azimuth DBF Processing”.

d. The Azimuth DBF Processing output shall comprise (NxNaz)xNr complex samples, which shall
be parallel-to-serial converted by a proper P/S Interface and finally compressed with a “Block

Adaptive Quantizer” (BAQ) algorithm.

DRQ- 4: Processing Execution Time

The whole EMC2 demonstrator processing flow shall start at the beginning of the Radar synthetic aperture

and shall be completed between 2TAS and 4TAS seconds, where TAS is the synthetic aperture duration. The

effective required time shall be evaluated for the EMC2 demonstrator.

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

Memory
(Azimuth DBF

Inputs)

M x Nr x N samplesARPA demonstrator input

(simulated digital signals)

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

(

M x Nr x N samplesARPA demonstrator input

(simulated digit signals)

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

Memory
(Azimuth DBF

Inputs)

M x Nr x N samplesARPA demonstrator input

(simulated digital signals)

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

(

M x Nr x N samplesARPA demonstrator input

(simulated digit signals)

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

Memory
(Azimuth DBF

Inputs)

M x Nr x N samplesARPA demonstrator input

(simulated digital signals)

M
elevation
channels

v

v

v
ADC

ADC

ADC

ADC

ADC

ADC
N

Azimuth Channels

Nr
Range Samples

Elevation
DBF

Processing

(

M x Nr x N samplesARPA demonstrator input

(simulated digit signals)

Azimuth)

DBF

Processing

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 59 of 73

The Elevation DBF Processing, Azimuth DBF Processing, and BAQ Processing requirements are defined in

detail in the following sub-sections.

6.2.2.1 Elevation Digital Beam Forming Processing Requirements

Let us consider the multi-channel receiver configuration at one of the Naz satellite positions within the

synthetic aperture. Such a configuration corresponds to one of the M x Nr complex sample sets forming the
M x Nr x N complex sample set represented in next figure. Each of the M different channels is denoted by a

different m index value, (for m = 1 to M). The lower part of the figure shows the DBF processing to be

carried out on these data.

Figure 52: Elevation Digital Beam Forming (DBF) Processing Scheme

DRQ- 5: Elevation DBF Processing

The Nr-complex-samples m-th signal sm[k] received by the m-th channel , shall be processed separately
through the following steps1:

a. For each m-th elevation channel a Nr sample time-variant Phase-Shift, exp(jΦm[k]), shall be

multiplied by the sm[k] signal. The Phase-Shift shall be defined as:

 ,

where2

1 k is the discrete time index related to the digital sampling frequency FS i.e. .k=1,2,…, Nr
2 Such a Receive Beam Scanning Angle Span allows fitting the -3dB Transmit Beam Angular Aperture in elevation

from Near-Range to Far-Range.

exp(j·φ1[k]) exp(j·φ2[k]) exp(j·φM[k])

Nr Complex

Samples

Signal

Nr Complex

Samples

signal

Nr Complex

Samples

signal

ΔT1[k] ΔT2[k] ΔTm[k]

][sin)1(
4

][
0

kmdk scanelm

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 60 of 73

and the s index spans 1 trough Nscan (i.e. s=1,2,… ,Nscan) according to the following discrete time

index set constraint

The requirements for the parameter values necessary to compute Φm[k] through the previous

expressions are reported in following paragraph.

b. For each m-th elevation channel a Time-Delay, ΔTm[k], shall be applied as shown on next figure.
The m-th Time-Delay shall be defined as:

The parameter values required to compute ΔTm[k] as per the previous expressions are reported in

following paragraph.

c. After executing the (a) and (b) steps for each m-th channel, the M channel outputs shall be

summed in order to generate an unique Nr-sample output signal as shown on next figure.

DRQ- 6: Elevation DBF Parameters Computation and Storage

The values of Φm[k] and ΔTm[k] shall be computed and stored within the EMC2 demonstrator memory

before the EMC2 demonstrator processing starts.

6.2.2.2 Azimuth DBF Processing Requirements

The Naz NxNr data matrices generated by the Elevation DBF Processing at each satellite position shall form,
at the end of the Radar Synthetic Aperture, a NazxNxNr complex-samples memory tensor. Accordingly, for

each range sample, the NxNaz slow-time samples of the signal constructed in azimuth by the synthetic

aperture process shall be fed to the Azimuth DBF Processing as shown in next figure.

Figure 53: Azimuth DBF Processing Scheme

1

1
22

][

scan

PRPR
scan

N
sk

scan

r

scan

r
sacanr

N

N

N

N
1-s s.t. 1,2,...N s 1,2,...N k sk

][sin)1(
2

][kmd
c

kT scanelm

+

Channel1

Channel2

ChannelN

Naz azimuth samples

N

Nr range

samples

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

Azimuth DBF Processing

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

+

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Naz

az

PN1(fa)

PN2(fa)

PNN(fa)

Naz

+

Channel1

Channel2

ChannelN

Naz azimuth samples

N

Nr range

samples

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

+

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Naz

az

PN1(fa)

PN2(fa)

PNN(fa)

Naz

azimuth

channels

N·Naz

samples

Channel 1

Channel 2

Channel N

PN1(f)

PN2(f)

PNN(f)

RN(f)

+

Channel1

Channel2

ChannelN

Naz azimuth samples

N

Nr range

samples

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

Azimuth DBF Processing

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

+

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Naz

az

PN1(fa)

PN2(fa)

PNN(fa)

Naz

+

Channel1

Channel2

ChannelN

Naz azimuth samples

N

Nr range

samples

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

PN1(fa)

PN2(fa)

PNN(fa)

Nazsamples

NxNazsamples

+

FFT P1(f)

FFT P2(f)

FFT PN(f)

IFFT

P/S

PN1(fa)

PN2(fa)

PNN(fa)

Naz

az

PN1(fa)

PN2(fa)

PNN(fa)

Naz

azimuth

channels

N·Naz

samples

Channel 1

Channel 2

Channel N

PN1(f)

PN2(f)

PNN(f)

RN(f)

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 61 of 73

DRQ- 7: Azimuth DBF Processing

For each range sample, denoted by the index value r (for r =1,…,Nr), the Azimuth DBF Processing shall

be carried out as per the following steps:

a. The Naz-complex-samples signals sn(t), (for n=1,…,N) shall be Fourier Transformed via a Fast

Fourier Transform (FFT) processing block as shown in next figure in order to transform the signal

domain from the slow-time domain, into the Doppler frequency domain, Sn(f)
3.

b. Each Naz-point Doppler Spectrum Sn(f) generated at step (a) shall be point-wise multiplied by the

n-th reconstruction functions Pn(f) represented by the Naz-point subfunctions Pnj(f) (for j =1,…,N)
and stored as the N·Naz-points function Rn(f) as per the Interleaving4 shown in next figure.

Figure 54: n-th Interleaving Block Diagram for the Azimuth DBF Processing

The N Pn(f) reconstruction functions (i.e. the N2 Pnj(f) subfunctions) can be organized as per the

following Reconstruction Matrix P(f):

Accordingly the N2 reconstruction components, Pnj(f), shall be computed as

P(f) = N∙H(f)
-1

where H(f) is a NxN matrix having the following form5:

3 Without lack of generality the digital slow-time domain signal has been herein represented in the continuous time

domain t by sn(t). Similar considerations follow for the representation of the continuous Doppler frequency f by Sn(f).

Proper representation in the dicrete time and frequency domains will be outlined in the forthcoming part of the section.
4 Such an interleaving allows representing the Rn(f) Doppler Spectrum from from DC to N·PRF.
5 For the EMC2 demonstrator purposes the H(f) matrix is non-singular

 fP 1n

 fP 2/Nn

 fP Nn

 fP N/21n

#1 #N/2 #N/2+1 #N

Sn(f)

Naz samples

Rn(f)

N·Naz samples

PRFNfPPRFfPfP

PRFNfPPRFfPfP

fP

NNNN

N

)1(

)1(

)(

21

11211

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 62 of 73

The H(f) entries can be computed from6

where R0 is the reference slant range distance7

while the other parameters are defined in § 6.2.2.3.

c. The N∙Naz-point functions Rn(f) (for n=1,…,N) shall be summed in order to obtain the N∙Naz-point
spectrum Srec(f) of the reconstructed signal.

d. A N∙Naz-point Inverse Fast Fourier Transform (IFFT) shall be carried out on the Srec(f) signal in

order to transform the signal domain from the Doppler frequency domain into the slow-time
domain thus obtaining the signal sr(t) for a given r (for r =1,…,Nr)

8.

e. The N∙NazxNr data samples resulting from the overall azimuth processing shall be P/S outputted
towards the subsequent BAQ processing in the following order:

 for u = 1 to N∙Naz

 for r = 1 to Nr

 [sr[u]]

 end

 end

DRQ- 8: Azimuth DBF Parameters Computation and Storage

The values of the Pnj(f) functions shall be computed and stored within the EMC2 demonstrator memory
before the EMC2 demonstrator processing starts.

6 The following expression results from assuming a straight line spacecraft trajectory and a Mac Laurin expansion of the

received signal phase up to the 2nd order.
7 Clearly Ro varies between the near and far range on the oblate spheroidal Earth However the Hn(f) variations as a

function of Ro are negligible. Accordingly, for the EMC2 demonstrator purposes, the following expression for Ro is

nevertheless a proper approximation considering a spherical Earth.
8 So far the sr(t) signal was referred to according to a continuous-time domain representation for notation. The

equivalent dicrete-time domain representation can be defined as sr[u] (for u = 1 to N∙Naz).

))1(())1((

)()(

)()(

)(

1

1

1

PRFNfHPRFNfH

PRFfHPRFfH

fHfH

fH

N

N

N

 f

v

nd
j

R

nd
jfH azaz

n

)1(
exp

2

)1(
exp)(

00

22

 HRHHRHRR EEE 2
2

 cos
2

 cos 2

2

0

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 63 of 73

6.2.2.3 EMC2 Demonstrator Parameter values

DRQ- 9: Parameter Constraints for the EMC2 Demonstrator

All the parameter values required to implement the digital signal processing techniques are reported in the

following table.

Definition

Notation Requirement

Center Wavelength λ0 0.031 m (X-band)

Satellite Altitude H 580 km

Satellite Velocity v 7560 m/s

Transmit Elevation Angle (off-boresight) θ 35°÷55°

Transmit antenna size in azimuth l ≥ 4 m

Transmit antenna size in elevation w ≥ 0.38 m

Number of receive sub-apertures/channels in
azimuth

N ≤ 2

Receive sub-aperture size in azimuth daz ≥ 4 m

Receive antenna size in azimuth L N∙daz

Number of receive sub-apertures/channels in
elevation

M ≤ 8

Receive sub-aperture size in elevation del ≥ 0.16 m

Receive antenna size in elevation W del∙M

Transmit beam -3dB angular aperture in
elevation

θR ≤ 4.6°

Receive beam angular aperture in elevation θP ≥ 1.38°

Number of receive beam steering positions Nscan ≥ 5

Approximate Spherical Earth Radius RE 6371 Km

Pulse Repetition Frequency PRF ≤ 7000

Sampling Window Length SWL ≤ 1500 usec

Receiver Sampling frequency Fs ≤ 200 MHz

Analog-to-Digital Converter bit number Nbit 8

Number of range samples Nr SWL∙Fs

Radar Synthetic Aperture Time
TAS ≥

Number of transmit satellite positions within
the Synthetic Aperture Time

Naz TAS∙PRF

Table 12: EMC2 Demonstrator Constraints

cos

0

lv

H

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 64 of 73

In particular the following Operative Scenario shall be outlined for the EMC2 demonstrator.

Center Wavelength λ0 0.031 [m]

Satellite Altitude H 580 [km]

Satellite Velocity v 7560 [m/s]

Transmit Elevation Angle θ 35 [deg]

Transmit antenna size in azimuth l 4 [m]

Transmit antenna size in elevation w 0.38 [m]

Number of receive sub-apertures/channels in

azimuth
N 2

Receive sub-aperture size in azimuth daz 4 [m]

Receive antenna size in azimuth L N∙daz

Number of receive sub-apertures/channels in

elevation
M 8

Receive sub-aperture size in elevation del 0.19 [m]

Receive antenna size in elevation W del∙M

Transmit beam -3dB angular aperture in

elevation
θR 4.6 [deg]

Receive beam angular aperture in elevation θP 1.38 [deg]

Number of receive beam steering positions Nscan 5

Approximate Spherical Earth Radius RE 6371 [Km]

Pulse Repetition Frequency PRF 2000 [Hz]

Sampling Window Length SWL 400 [usec]

Receiver Sampling frequency Fs 200 [MHz]

Analog-to-Digital Converter bit number Nbit 8

Number of range samples Nr 80000

Radar Synthetic Aperture Time TAS Naz/PRF≈ 8.19 [s]

Number of transmit satellite positions within

the Synthetic Aperture Time
Naz 214

Table 13: Operative Scenario

Without lack of generality for the EMC2 project, the TX/RX1/RX2 Antenna geometrical relationships

shown in the figure reported hereafter will be taken into account for computing the 2x2 Reconstruction

Matrix P(f).

Figure 55: Tx/Rx Antenna Geometrical Relationships

Accordingly the Pnj(f) subfunctions (for i,j =1,…,2) are9

9 For the sake of completeness the subfunctions Pnj(f) frequency domain in Hz is [-PRF , 0) for P11(f) and P21(f) while

[0 , PRF) for P12(f) and P22(f).

TX & RX2 Phase CenterRX1 Phase Center Straight S/C

Velocity

Direction

+daz interelement spacing @ Rx

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 65 of 73

 where

On the complex z-plane, the Naz radix-2-FFT points are equally distributed around the unit circle and

therefore

where k is the discrete index. Finally for the EMC2 demonstrator the Naz points Pnj[k] subfunctions (for i,j
=1,…,2) appear as

 21

1

21

2

21

21

2

2

2

2

1-, ,2 ,1 ,0k22

,-1 ,2- ,1- ,-k 21

2

21-, ,2 ,1 ,0k12

2

2,-1 ,2- ,1- ,-k 11

jj

j

N

jj

j

NNN

PRFk
N

PRF

v

d
j

jj

N

k
N

PRF

v

d
j

jj

NNN

ee

e
kP

ee

e
kP

eee

kP

eee

kP

az

azazaz

az

azaz

az

azazazaz

6.2.2.4 Block Adaptive Quantizer (BAQ) Processing Requirements

6.2.2.4.1 General Description

The Block Adaptive Quantizer (BAQ) algorithm shall be applied to the Azimuth DBF Processing serial

output in order to compress the 8-bits complex digital samples (by reducing the number of bits needed to

represent each sample of the I and Q components) with no degradation for the SAR performance.

The BAQ algorithm is based on two steps:

 Normalization of the 8-bits I/Q samples at the Azimuth DBF Processing serial output.

 21

1

21

2

2121

2

2

2

2

2221

2

212

2

211

jj

j

jj

j

PRFf
v

d
j

jj
f

v

d
j

jj

ee

e
fP

ee

e
fP

eee

fP

eee

fP
azaz

 PRF

2

2 00

2

2

00

2

1
v

d

R

d

R

d azazaz

k
N

PRF
f

az

k

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 66 of 73

 Adaptive Re-Quantization of the normalized I/Q samples with a reduced number of bits.

The samples normalization is computed on blocks of 128 samples and is based on an estimate of each block

power. A block power is computed by summing the absolute value of the I and Q samples within the block.

For every 128 samples block, the Adaptive Re-Quantization is based on selecting the dynamic range of each

8 bits complex sample by means of optimum converters, in the following also referred to as “quantizers”,

whose thresholds are related to the block-power-measurement. The thresholds of such quantizers shall be
pre-computed and stored within the EMC2 demonstrator memory.

The BAQ Compression Ratio is defined as the ratio between the number of bits associated to each sample
before compression (8 bits) and after compression (Z bits).

In the following sections, the algorithm is specified for the following compression ratios :

8:4, 8:3, 8:2 and 8:1 (i.e. 8:Z with Z=4, 3, 2, 1).

For the 8:1 Compression Ratio, the BAQ extracts (from the Azimuth DBF Processing serial output) as a 1 bit

complex output only the sign of the I and Q samples. In this case the estimate of the sample-block power
shall be computed solely to pinpoint the signal power information.

6.2.2.4.2 BAQ Characteristics

DRQ- 10: Implemented Compression Ratios

Four different compression ratios shall be implemented: 8:4, 8:3, 8:2 and 8:1.

DRQ- 11: Input Dynamic Range

The dynamic range of the 8-bits Azimuth DBF Processing serial complex output (i.e. 8 bits for the I

component and 8 bits for Q component) shall be spanned by 16 Quantizers Schemes (QS) for each of the 4

compression ratios (i.e. Z=4, 3, 2, 1).

DRQ- 12: Quantizers Characteristics

For each Compression Ratio Z, each of the 16 BAQ Quantizer Schemes (QS) is defined by a set of 15
“Quantizer Selection Thresholds” (QST) and a set of “Quantizer Thresholds” (QT).

The number of Quantizer Thresholds QT for each of the 16 BAQ Quantizer Schemes QS, depends on the

Compression Ratio Z and is given by:

Next Table reports, for each Compression Ratio, the number of QTs for each Compression Ratio and the
total number of QTs.

Compressio

n Ratio (Z)

Number of QTs for each QS

(M)

Total Number of QTs

(16·M)

8:4 7 112

8:3 3 48

8:2 1 16

8:1 0 0

Table 14: Quantizer Thresholds

12 1 ZM

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 67 of 73

DRQ- 13: Storage Requirement

The total number of BAQ parameter values to be stored for each Compression Ratio, considering both QSTs

and QTs is reported in Next Table:

Compression Ratio (Z) Total Number of BAQ Parameter Values

8:4 112+15

8:3 48+15

8:2 16+15

8:1 15

Table 15: Number of BAQ Parameter Values to be stored for each Compression Ratio

DRQ- 14: Input Data Coding

The BAQ input data shall be coded into 8 bits Sign & Magnitude (i.e. 7 bits for the magnitude and 1 bit for

the sign) for each I and Q sample, as shown in the following table.

D7 D6 D5 D4 D3 D2 D1 D0 value

0 1 1 1 1 1 1 1 +127

0 0 0 0 0 0 0 1 +1

0 0 0 0 0 0 0 0 +0

1 0 0 0 0 0 0 0 -0

1 0 0 0 0 0 0 1 -1

1 1 1 1 1 1 1 1 -127

Table 16: Sign & Magnitude Coding

The Nbit bits complex samples at the P/S Interface output shown in next figure shall be transformed from a

Two’s Complement representation into a Sign & Magnitude representation according to the following
mapping10:

for each Two’s Complement number whose decimal value is X the corresponding Sign & Magnitude number
whose decimal value is Y will be Y=X if X>=0 else Y=X+1.

DRQ- 15: Sign Coding

The sign shall be coded as a 0 for positive numbers and as a 1 for negative ones.

DRQ- 16: Threshold Encoding

The QTs shall be coded as unsigned 7 bit integers, while the QSTs shall be coded as 15 bit unsigned integers.

DRQ- 17: Upper Bound Threshold

10 Such a mapping results in inverting the 7 Least Significant Bits (LSB) of negative two’s complement numbers i.e.

those whose Most Significant Bit (MSB) is 1. Positive two’s complement numbers (i.e. those whose MSB is 0) are left

unaltered.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 68 of 73

For each Compression Ratio, each QS shall have an implicit upper-bound QTM+1 set to 127.

6.2.2.4.3 Power Estimation

The i-th POWi power estimate shall be computed on the i-th 128-samples block, by summing the absolute
values of the I and Q samples within the block.

DRQ- 18: BAQ Block Segmentation

The I and Q samples fed to the BAQ Processing input shall be divided in blocks of 128 samples each.

DRQ- 19: Power Estimation

For each i-th block the SQi power estimate shall be computed as follows:

and shall be represented as a 15 bits unsigned integer.

In case the total number of BAQ Processing input samples is not a multiple of 128, the last block called

“Residual Block”, will be shorter than 128 samples.

DRQ- 20: Residual Block Power Estimation

No Power estimate shall be performed for the Residual Block.

6.2.2.4.4 Quantizer selection

For each Compression Ratio, the k-th QSk (for k=1,2,…,16) shall be selected by comparing the computed

Power POWi for the i-th block with the set of 15 QSTs..

DRQ- 21: QS Selection

For each Compression Ratio, the QSk to be selected shall be the largest one for which:

for k=1,…15. In case

the QS to be selected shall be QS16.

The k-index of the selected QSk to be used for a Residual Block shall be the one used for the previous block.

6.2.2.4.5 Samples Coding

Each In and Qn sample (for n=1,…,128) within each i-th block shall be coded as per the following
procedures:

DRQ- 22: In and Qn Sample Sign Extraction

The sign of each In and Qn sample shall be extracted from the most significant bit of the sample Sign &
Magnitude representation

in

nni QIPOW

128

1

ki QSTPOW

15QSTPOWi

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 69 of 73

DRQ- 23: |In| and |Qn| Sample Coding

For all Compression Ratios except 8:1 each |In| and |Qn| sample shall be compared to the QTm values. The m

index (for m=1,…, M+1) to be selected shall be the largest one for which:

For all Compression Ratios except 8:1 the output |In| and |Qn| sample coding shall be m-1.

DRQ- 24: In and Qn Sample Coding

a. For the 8:4 Compression Ratio, the output binary coding shall be the following:

m B4 B3 B2 B1

1 SIGN 0 0 0

2 SIGN 0 0 1

3 SIGN 0 1 0

4 SIGN 0 1 1

5 SIGN 1 0 0

6 SIGN 1 0 1

7 SIGN 1 1 0

8 SIGN 1 1 1

Table 17: 8:4 Compression Ratio Binary Coding

b. For the 8:3 Compression Ratio, the output binary coding shall be the following:

M B4 B2 B1

1 SIGN 0 0

2 SIGN 0 1

3 SIGN 1 0

4 SIGN 1 1

Table 18: 8:3 Compression Ratio Binary Coding

c. For the 8:2 Compression Ratio, the output binary coding shall be the following:

m B2 B1

1 SIGN 0

2 SIGN 1

Table 19: 8:2 Compression Ratio Binary Coding

d. For the 8:1 Compression Ratio, the output binary coding shall be the sign as per DRQ-22.

min

min

QTQ

QTI

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 70 of 73

6.2.2.4.6 QSTs Values

The values for the QSTs for each Compression Ratio are reported in the following tables.

DRQ- 25: Quantizer Selection Thresholds

a. For the 8:4 Compression Ratio the 15 QSTs shall be:

QST15 QST14 QST13 QST12 QST11 QST10 QST9 QST8 QST7 QST 6 QST 5 QS T4 QST3 QST2 QST 1

9593 7978 6617 5483 4539 3754 3101 2590 2081 1753 1384 1220 995 807 678

b. For the 8:3 Compression Ratio, the 15 QSTs shall be:

QST15 QST14 QST13 QST12 QST11 QST10 QST9 QST8 QST7 QST 6 QST 5 QS T4 QST3 QST2 QST

1

12599 9981 7794 6060 4703 3644 2817 2172 1669 1252 969 745 544 408 296

c. For the 8:2 Compression Ratio the 15 QSTs shall be:

QST15 QST14 QST13 QST12 QST11 QST10 QST9 QST8 QST7 QST 6 QST 5 QS T4 QST3 QST2 QST 1

18841 14996 11213 8071 5747 4080 2886 2031 1419 957 687 433 325 188 102

d. For the 8:1 Compression Ratio the 15 QSTs shall be:

QST15 QST14 QST13 QST12 QST11 QST10 QST9 QST8 QST7 QST 6 QST 5 QS T4 QST3 QST2 QST 1

23048 19156 14590 10208 6854 4566 3028 1994 1300 834 522 313 175 86 31

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 71 of 73

6.2.2.4.7 QTs Values

The values for the quantizer thresholds QTs for each Compression Ratio are reported in the following tables.

DRQ- 26: Quantizer Thresholds

a. For the 8:4 Compression Ratio, the 16x7 QTs shall be:

QSk QT1 QT2 QT3 QT4 QT5 QT6 QT7

16 13 27 41 57 75 96 126

15 10 22 34 47 62 79 104

14 8 18 28 39 51 65 86

13 7 15 23 32 42 54 71

12 5 12 19 26 34 44 58

11 4 10 15 21 28 37 48

10 3 8 12 18 23 30 39

9 3 6 10 14 19 25 32

8 2 5 8 12 16 20 27

7 1 4 7 9 13 17 22

6 1 3 5 8 10 14 18

5 1 2 4 6 8 11 15

4 0 2 3 5 7 9 12

3 0 1 3 4 5 7 10

2 0 1 2 3 4 6 8

1 0 1 1 2 3 5 6

b. For the 8:3 Compression Ratio, the 16x3 QTs shall be the following:

QSk QT1 QT2 QT3

16 35 75 126

15 27 58 98

14 21 45 76

13 16 35 59

12 12 27 46

11 10 21 36

10 7 16 28

9 5 12 21

8 4 9 16

7 3 7 13

6 2 5 10

5 1 4 7

4 1 3 5

3 0 2 4

2 0 1 3

1 0 1 2

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 72 of 73

c. For the 8:2 Compression Ratio, the 16x1 QTs shall be:

QSk QT1

16 126

15 90

14 64

13 45

12 32

11 23

10 16

9 11

8 8

7 5

6 3

5 2

4 1

3 1

2 0

1 0

6.3 Conclusions for Radar Payload Applications

From a detailed Survey of HPPM Components for the HPEC Architecture Study Case it is possible to:

1) Exclude all FPGAs embedded solutions, because of low performances and poor radiation data (Virtex-4 is

the only one available at QV level).
Also open SPARC looks not having reached a level of diffusion such to encourage to go in that direction.

2) confirm the interesting on ARM, or at least some of the Cores, but they need to licensing and then find a
hardware implementation makes them less attractive, although they have a very large popularity. Also

components embedding ARM cores (Freescale in particular could be attractive), are very specialized,

embedding several functions not relevant for space application.

3) The Freescale/e2v PowerPC family looks today the most attractive way to follow because of:

a) Thales Alenia Space is already cooperating with e2v, for PC7448

b) e2v has the long term agreement with Freescale, to ensure long term availability of the
selected product

c) In addition also Thales, and in particular Thales Avionics, have close relations with

Freescale and e2v. This in particular includes NDA between Thales and Freescale.

For 8 or more cores the initial choice shall be P4080, to evolve to T4160 or T4240.

ARTEMIS Call 2013, project 621429 EMC²

D9.6 Space applications final report Page 73 of 73

7. References

[1] Cobham Gaisler, Quad Core LEON4 SPARC V8 Processor, LEON4-N2X Data Sheet and User’s

Manual, datasheet, 2014.

[2] Cobham Gaisler, GR-CPCI-XC4V Development Board User Manual, 2013.

[3] SYSGO AG, PikeOS Fundamentals, datasheet, 2009.
[4] FentISS, "XtratuM Hypervisor for Multicore LEON3/4", User Manual, 2013.

[5] CCSDS 122.0-B-1, Image Data Compression, Blue Book Issue 1, 11/2005

