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1. Introduction 

 

1.1 Objective and scope of the document 
 

The ability to properly reuse scarce resources on a spacecraft can determine the success or failure of a 

mission. The important advances in hardware of the last decade are slowly, but inevitably, being adopted 

in the space domain: multiprocessor (LEON4), reconfigurable hardware, etc. The challenge is now how to 
exploit all the capabilities of this new hardware without jeopardising the certification process. The more 

static and fixed is the behaviour of the system the easier is to certificate it. Unfortunately, the ideas of 

dynamic reconfiguration or workload balance always plays against the certification due to the difficulty to 
cover and analyse all the cases. This living lab will analyse and address the potential blocking issues that 

may prevent the use of the new HW both at the HW level and in the interaction with the software 

development cycle of highly critical systems. 

 
This Use Case will be focused on the software procedures and tools that will support the proposed 

MPSoC architectures for space application. The requirements for space software are very stringent and 

impose strong limitations that condition the selection of the different SW elements (hypervisor/virtual 
machines, Time/Space Partitioning OS, …). 

 

Most hardware advances has a positive impact on performance, energy consumption, weight, etc. but not 
on the way the software is designed and developed. The same code can be compiled for the new hardware 

with minor, or not at all, modifications. 

 

Unfortunately, this is not the case on multi-processor and re-configurable HW where the changes are so 
large that the software gets affected by the new hardware architecture and the compatibility with the 

space requirements is strongly compromised. In order to get all the benefits from the new hardware 

architecture, the software must be aware of the underlying facilities. The interactions between the SoC 
devices (memory affinity, bus access, contention on shared resources, etc.) has to be taken into account 

when the software elements (processes, threads and routines) are developed, allocated or dynamically re-

adjusted to the computing resources. 
 

Different OSs and tools will be evaluated and checked against the space standards in order to define an 

MPSoC toolset that guarantees the space worthiness of the different Software developed. The tool-set 

developments will also comprise TTEthernet tool plug-ins and tool extensions in order to connect the 
specific space related tool plug-ins to the standard TTEthernet tool environment. Furthermore specific 

drivers will be provided in the area of TTEthernet based endsystems supporting Sysgo Pike OS. These 

toolsets will be evaluated and recommended for the rest of the Use Cases. 
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2. Proposed Massive Data Processing MPSoC Architectures for Space  

 

The proposed massive data processing MPSoC architecture allows to implement and to validate new 

signal processing algorithms for space applications. It has been designed to be used as a generic platform 

for the following space signal processing techniques: 
 

 Regenerative transponders 

 Adaptive air interface 

 Interference cancellation/mitigation technologies 

 High efficiency modulation/coding techniques 

 Spot beam technology   

 

An application based on sub-band signal processing will be implemented to demonstrate the ability to 
carry out a multiband analysis.  

 

2.1 Sub-band signal processing application 
 

Radiometers applications require identifying Radio Frequency interferences (RFI). A conventional 
technique to identify RFI is to use a filter bank with spectral Kurtosis estimator. The Kurtosis estimator 

allows detecting non-Gaussian signals (interferences). The Kurtosis estimator can be expressed as 

following: 

 

 
 

The Kurtosis estimator is applied to each sub-band to obtain the spectral Kurtosis estimator in order to 
detect the RFI frequency location. The sub-band separation is carried out by a filter bank with 

computational efficient structures like DFT filter banks.  

 

 
Figure 1: DFT filter bank 

 

The proposed architecture for massive data processing will implement a DFT filter bank with Kurtosis 

estimator per band in order to integrate a sub-band RFI detection technique for space radiometers. 
 

2.2 Hardware platform for MPSoC Data Processing  
 

The hardware platform is based on two space equivalent FPGA. The first one is a Rad-tolerant ProAsic 

3E from ACTEL. This FPGA will integrate a LEON2 processor to control the signal processing 
algorithms based on real-time operating systems like RTEMS (space-qualified OS). Signal processing 
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algorithms will be integrated in a Virtex5 FPGA specifically useful for high-performance DSP 

applications.  

 

The proposed board is presented hereafter. 
 

 
Figure 2:  LADAP Board 

 
Next table summarize the memory and interfaces resources of LADAP board for signal processing 

applications (Virtex5). 

 

FLASH  SST39VF3201   x3   configuration: 2Mx40  (EDAC) 

SRAM  CY62177EV30    x3   configuration: 2Mx40  (EDAC) 

SDRAM  3DSD4G16VS8483  x2    

Ethernet controller 88E1111 

 

A DSP controller based on an embedded microprocessor will be used to interface with LEON2 processor 

and to command and control DSP applications. LEON2 and DSP controller will interact with a dual-port 

RAM as a mail-box. This technique is widely used as a message passing mechanics. The dual-port RAM 
will be integrated in the LEON2 memory map by using the specific IO signal in order to use the dual-port 

RAM as a specific page of the memory. An example of the proposed architecture of the interconnection 

of both FPGAs can be seen in next figure.  
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Figure 3:  Hardware architecture for On-Board data processing with Dual-port RAM interface 

 
LADAP board with dual-port RAM interface will be also used for Self-Healing Architecture for Space in 

next section as collaboration between Tecnalia (reconfiguration techniques) and TASE (space-equivalent 

hardware architecture and LEON2 controller). 
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3. Proposed Self-Healing Architectures for Space  

 

Dynamic Partial Reconfiguration (DPR) for FPGA devices has many advantages not only for the Space 

domain but also for many other industrial domains. Nevertheless, the space domain is a very demanding 

environment exposed to high radiation doses and where reliability of systems is critical. Taking into 
account these issues, in the context of subtasks T4.3 and T4.4 and the living lab 3 (WP9: Space 

applications) a platform will be built which allows dynamic reconfiguration of a Xilinx FPGA but 

including reliability and self-healing features.  
 

The proposed platform will have the following characteristics: 

 Designed for Virtex 5Q Devices (certified for Space environment) and implemented on the 

LADAP hardware board  

 The core of the platform will be a Microblaze processor which controls both the reconfiguration 

process and some of the fault-tolerant features. 

 It allows Dynamic Reconfiguration of custom peripherals in the Virtex 5 FPGA device 

 It includes fault-tolerant features against radiation induced errors both for error mitigation (Xilinx 

Isolation Design Flow methodology, watchdog timers interruption …) and error detection and 

correction (periodic configuration memory scrubbing, continuous check of configuration 

memory, readback CRC of configuration memory …) 

 The platform can be controlled by the software implemented in the LEON processor of the 

LADAP platform through a communications interface implemented as a shared dual port RAM 

memory. 

 

3.1 Module Architecture Description 
 
The architecture of the DRM is shown in the following figure: 

 
Figure 4: DRM architecture 

 

As it has been already mentioned the FPGA device is divided in 2 different partitions a reconfigurable 

area when the different modules which are potentially reconfigurable are implemented and a static one 

where the DRM is implemented. The design in the static area has a higher criticality level as it is in 
charge of controlling the rest of the modules implemented in the FPGA and also of the communications 

with the control software in the LEON2 processor; therefore more error protection mechanisms should be 

implemented on it. The DRM has the following modules: 
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 Microblaze processor: Embedded processor implemented using logic resources. It’s the core of 

the system in charge of controlling the dynamic reconfiguration of peripherals, some of the error 

protection functions and configuration of the system. The fault-tolerant feature of the processor 

will be activated. The processor accesses its peripherals with a PLB bus (Xilinx EDK peripheral 

bus for Virtex 5 devices). 

 Program memory: It is the 64 Kbits code and data memory used by the microblaze processor. It 

is implemented using Block RAM memory resources of the device. These resources are protected 

with the ECC feature to detect and correct radiation induced errors.  

 Reset and Interrupt controllers: Peripherals in charge of controlling the reset and interrupt 

request (IRQ) inputs of the microblaze processor. They receive the different reset and interrupt 
sources and generate the appropriate reset and IRQ signals for the processor. 

 FRAME_ECC primitive: It’s a dedicated resource of Virtex 5 devices in charge of 

autonomously monitoring the configuration memory. It generates three different output signal: 

o A SYNDROME_VALID signal each time it reads a new configuration frame; this signal 
is used as a “heart beat” by an external watchdog for SEFI detection.  

o An ECC_ERROR signal together with a SYNDROME signal each time it detects an 

erroneous frame. The ECC_ERROR is the error flag and the SYNDROME shows the 

address of the faulty frame so the processor can repair it via the HW ICAP. 
o A CRC_ERROR flag that shows that there is an error in the configuration memory that 

cannot be located and therefore full memory scrubbing is required. 

 HW ICAP controller: It is the peripheral in charge of controlling the internal configuration port 

of the device used during the dynamic reconfiguration process. Data from the partial 
configuration images is loaded into the FPGA configuration memory through this peripheral. 

 Watchdog Timer: It is a safety mechanism to avoid processor’s crashes. It is a continuously 

running timer that generates an interrupt signal for the processor each time it overflows, the 

processor then resets the timer. If the counter overflows twice without a processor reset, then it 
generates a reset signal that restarts the whole system.  

 Communication Interface Shared Memory: It is a dual port shared memory that is employed 

as a communications interface with the control software running on the LEON3 processor of the 

LADAP board. It is implemented using block RAM memory resources of the FPGA and it is 

divided in two different areas: In the first one the LEON3 processor writes messages and the 
microblaze reads them and the other one viceversa. 

 External Memories Controllers: The system has access to two different external memories: a 

SDRAM memory and a flash one. The flash memory is employed to store the full and partial 

configuration images files and the SDRAM memory could be used for storing program data.  

 Timer: A timer peripheral that could be employed for timing functions of the software running in 

the microblaze. 

 

Apart from the DRM implemented in the static area of the device, additional modules for different 
applications can be implemented in the reconfigurable area. These modules are accessible to the 

microblaze also through the PLB bus, so it can monitor and configure their working. As mentioned 

before, their functionality can be dynamically changed by the DRM. The images for the different 

reconfigurable modules are prestored in the flash memory and can be accessed by the processor any time. 
Additionally, new images for the reconfigurable areas can be provided by the LEON3 processor. These 

modules have a lower criticality level and, therefore, a lower number of error protection mechanisms are 

implemented on them. As proof of concept, two different types of modules are implemented: one for a 
simple mathematical operation (addition, subtraction or multiplication) and another one implementing 

different FIR filters. 
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4. Proposed MPSoC Architectures for Space 

 

This section describes an MPSoC demonstrator for space image processing. It is based on image 

compression and encryption according to CCSDS standards. Next figure shows the block diagram of data 

processing flow. 
 

 
Figure 5:  Data processing flow for image compression & encryption 

 

4.1 Data compression (CCSDS 122) 
 

The dilemma of modern on-board payload data-processing unit has existed for decades: the data rate of 

modern cameras in spacecraft is ever-increasing while the down-link is not always available and its 
bandwidth is limited. To meet the requirements of high data volume and high-speed processing 

capability, the Consultative Committee for Space Data Systems (CCSDS) has developed three standards 

related to image compression: CCSDS 121.0-B-1, CCSDS 122.0-B-1, and CCSDS 123.0-B-1. CCSDS 
121.0-B-1 is a recommendation for lossless data compression, approved in 1997. The second issue, 

CCSDS 121.0-B-2, approved in May 2012, makes a few modifications on the first issue. The CCSDS 

122.0-B-1,1 approved in 2005 defines the standard for image data compression (CCSDS-IDC). The 
CCSDS 123.0-B-1, approved in May 2012, specifies a method for lossless compression of multispectral 

and hyperspectral image data and a format for storing the compressed data. Among the three standards, 

the CCSDS-IDC is specifically tailored for grayscale monoband images. It was designed for image data 

from payload instruments of rockets, satellites, or spacecrafts; thus, it satisfies all the memory and 
computation restrictions of this kind of equipment. The algorithm is based on a three-level two-

dimensional (3-l 2-D) discrete wavelet transform (DWT) that performs decorrelation, followed by a bit 

plane encoder (BPE) that encodes the decorrelated data. The algorithm can provide both lossless and 
lossy compression. 

 

4.2 Data encryption (CCSDS 352) 
 

Traditionally, security mechanisms have not been employed on civilian space missions. In recognition of 
the increased threat, there has been a steady migration towards the integration of security services and 

mechanisms. For example, ground network infrastructures typically make use of controlled or protected 

networks. However, telecommands, telemetry, and science payload data, are still, for the most part, 

transmitted over unencrypted and unauthenticated radio frequency (RF) channels. As the threat 
environment becomes more hostile, this concept of operation becomes much more dangerous. This 

CCSDS Cryptographic Algorithm Recommended Standard is the foundation for all other CCSDS security 

Recommended Standards and Recommended Practices.  
 

This CCSDS Cryptographic Algorithm Recommended Standard is necessary because of the increasing 

interconnection of ground networks; the movement towards joy-sticking of instruments by principal 

investigators; the decreasing costs for hardware, potentially allowing cheap rogue ground stations to be 
established; and national trends towards enhancing mission security. These recommended algorithms 

Discrete 

Wavelet 

Transform 

(DWT) 

Bit-Plane 

Encoding  

(BPE) 

Data 

Encryption 

(AES-128/256) 

Image compression (CCSDS 122)  (CCSDS 352) 
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establish a set of common denominators among all missions for implementing information security 

services. 

 

AES is a symmetric, block-cipher algorithm operating over 128-bit blocks of data.  The algorithm 
operates over a 128-bit plaintext input block which results in the output of 128-bits of ciphertext 

(encrypted) data.  AES has been adopted by the United States as its official data encryption standard. ISO 

has also adopted AES as an International data encryption standard. AES has withstood the test of time 
and has been extremely resilient against attack.  

 

AES may be used in several modes of operation such as cipher-block chaining (CBC), electronic 
codebook (ECB), cipher feedback (CFB), output feedback (OFB), and counter (CTR). Each of these 

modes accomplishes the same result – turning plaintext data into ciphertext data.    

 

Each of these modes operates differently with different security strengths.  The chaining and feedback 
modes result in linkages from one block to another which means that if a block is lost or damaged, 

decryption will be affected since the decryption process also relies on the block linkages. On the other 

hand, counter mode does not employ any linkage between blocks and therefore can be implemented in 
parallel.   

 

Following CCSDS specifications will be used: 
 

 ALGORITHM AND MODE 
In order to achieve a minimum baseline all CCSDS missions shall use the Advanced Encryption 

Standard algorithm for encryption. 

 

 CRYPTOGRAPHIC KEY SIZE 
CCSDS implementations shall normally use a 128-bit key, but larger key sizes may be chosen for 

stronger security. AES is key agile and supports key sizes of 128-bits, 192-bits, or 256-bits. 

 

 ALGORITHM MODE OF OPERATION 
CCSDS implementations shall normally use Counter Mode (see next figure).  
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Figure 6: AES-CTR encrypt & decrypt operation 

 

4.3 Hardware architecture 
 
The validation of proposed application will be based on Quad-Core LEON3 processor (SMP). A RASTA 

hardware platform (Gaisler) will be used for embedded processors. 

 

        
 

Figure 7: LEON3 Quad-Core architecture and hardware platform 

 

The image compression and encryption algorithms will be parallelized using OpenMP paradigm under 
linux OS as a proof of concept.  
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5. Proposed MCSoC SW Modeling Toolset and Procedures – preliminary 

 

5.1 Introduction 
 

New execution platforms provide a great flexibility to improve application performance and flexibility 

while reducing energy consumption, weight and other important parameters in the space domain systems. 

 
However, space domain applications have just started to consider taking advantage of new execution 

platform capabilities, such parallel execution over multiprocessor HW, reconfigurable hardware, etc. This 

progressive adaptation is being limited due to the stringent requirements imposed by the required 
certification process.  

 

This Use Case will evaluate how to exploit the flexibility provided by the new hardware platforms 

without jeopardizing the certification of the space domain systems. The development process of space 
systems will be strongly affected by this new flexibility. The modeling, analysis and implementation of 

next generation space domain applications has to be adapted to the new execution platform capabilities, 

while maintaining the hard(strong) constraints imposed by this application domain.  

5.1.1 MPSoC modeling and analysis needs for Space Domain 

 

Static resource scheduling clearly helps the certification process. However, this approach can rarely take 
full advantage of the execution platform capabilities. Two main issues have to be addressed in space 

application development to exploit the potential benefits of these new hardware platforms: 

 

a) Application models normally does not have the adequate granularity in order to allow the 
development toolset to extract the medium- and fine-grain parallelism that will help in reducing 

the response times of key application functionalities. 

b) The tradeoff between dynamic reconfiguration of HW functionalities and static resource planning 
has not been properly addressed in the space application domain.  

 

These challenges have to be addressed by the next generation of tool suites to be used in space domain 

development to maximize the potential benefits of the new HW platforms.  

5.1.2 Existing modeling and analysis environments 

 

There are some modeling tool suites with analysis capabilities that could be good candidates to be used as 
tool chains in the development process of space domain application, e.g., MAST, Polarsys or 

Ocarina+Cheddar. However, these toolsets are normally based on well-established modeling languages, 

such as UML/Marte or AADL, that offer a powerful set of modeling artifacts, but at the same time it is an 
excessively broad set to be used in a practical and easy way. These artifacts allow a wide range of 

applications to be modeled and, with some limitations, analyzed. However, it is also this modeling 

flexibility which limits their use in the restrictive space domain application. The available flexibility does 

not provide the system engineer any guide about the design process. It is a proper design process what 
enables a correct system model, and this system will allow for a precise analysis while taking advantage 

of the new hardware capabilities.  

 
This UC proposes the development of a new toolset based on well-established concepts and analysis, but 

tailored for the development process of space domain applications over MPSoC. This toolset will guide 

the system engineer through the application development process (modeling, analysis and 

implementation) and will also take advantage of new hardware capabilities in a comprehensive and 
adequate manner. 
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5.2 Proposed toolset 
 
A software tool suite named “art2kitekt” (a2k) is under development for the design of HW and SW of 

mixed criticality real-time systems. This tool will provide to the target users an assisted and guided 

process for modeling the system (both HW and SW) and performing the analysis over those models in 

order to check if critical requirements are satisfied with this design.  
 

Moreover, this tool also provides some capabilities that foster the development process of the product. On 

one hand, a2k provides code generation capabilities taking as input the designed system model, analysis 
algorithm results and the target platform. On the other hand, the tool supports the interconnection with 

other development tools through the appropriate standards facilitating the sharing of data in the 

development process. 
 

It is worth noting that, in order to provide this guided system modeling and analysis, the a2k tool 

organizes features through a set of stages and application domain profiles. 

5.2.1 Goal 

 

The main purpose is to provide the system engineer with a new integrated modeling and analysis 

environment that will be capable to perform the offline analysis, configuration and code generation, while 
assisting the engineer in the modeling process. 

 

In highly-integrity systems, it is mandatory to pass a certification process. This process is a very 

important part of the product cost. Thus, following a model development approach that automates 
analysis and code generation, as well as the generation of evidences to pass the certification process, is 

needed. 

5.2.2 Guided modeling and analysis 

 

To allow the engineer to select among different application domain, a set of profiles will be available. 

This will be useful to bundle different predefined execution platforms which the engineer could make use 
without the need to input every device element and its parameters to the system, as well as the analysis 

techniques required for the selected platform and the specific code generation support. 

 

To guide the engineer through the whole modeling and analysis process, a set of stages are provided in 
the tool suite in order to incrementally input system data, perform required analysis, and generate the low-

level supporting code for the designed model.  

5.2.3 Internal toolset architecture 

 

The internal architecture of the a2k toolset is organized as follows: 

 

System Model Server (shown in Figure 8): This server (a2k server) will provide features for storing, 
querying and retrieving models to the corresponding client tools.  
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Figure 8: Internal Software Architecture 
 
System Editor: This tool will guide the user (engineer) in the system design by restricting the modeling 
capabilities, so that it matches the model that can be analyzed by the analysis stage. Usually the editor 

will provide more design flexibility in the software side than in the hardware part. In this way, the 

modeler will provide specific interfaces, used as a wizard, in order to guarantee a proper modeling of the 
system. This tool will store and retrieve the models from the SMS.  

 

Analysis Server: This component will provide a set of analyzing algorithms for each supported execution 
platform. This server will provide an analysis report that will be sent back to the user and an annotated 

model to be used by the following stages.  

 
Code Generation Server: This component of the toolset will generate the low-level supporting code and 

configuration files that will ensure the assumptions and results obtained by the analysis stage.  
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6. Status of the Art of Multicore Processor for avionics applications Survey  

 

Satellites are considered expensive and unreliable computers may be a risk for the mission. Past space 

computers were expensive and hard to get, hence the drive to make space computers was based on COTS.  

 
Present-day satellites carry very weak payload and platform computing performance capabilities. In the 

future, powerful onboard computing is desired. However, electric power for this task is quite limited. This 

section examines the state-of-the-art available space computer with particular emphasis on multicore 
processors with high-performance low-power space computers. As part of introduction of survey, a 

synthesis of the work performed by Ramon-Chips Ltd in their paper of “Survey Of Processors For Space” 

(Ran Ginosar) is here reported. As part of the survey a trade-off and a baseline solution of multicore 

processors for EMC2 avionics applications will be identified. 
 

6.1 Requirements for using processors in space 
 

Processors for space are required to be tolerant to the following radiation and environmental effects: TID 

(100-300 kRad for GEO/MEO and beyond, 10-50 kRad for LEO missions), Latch-up, SEU, SET, SEFI, 
temperature cycles, vibrations and others challenging requirements that make out of game the possibility 

to use COTS products. Another reliability issue is the complete and permanent failure of a processor or a 

critical sub-component. None of the methods surveyed here mitigate such failures, and the common 
mitigation method is based on deploying spare computers in combination with either a central 

reconfiguration circuit or a distributed recovery mechanism. 

 

Processors for space applications are typically required to achieve the following targets:  

 high performance,  

 low cost, 

 low power dissipation,  

 and reliability.  

 

This is sometimes achieved by high integration (for high performance, low cost and low power 

dissipation) and high tolerance to radiation and environmental effects (for reliability). The problem is that 
most available processors and integrated systems-on-chip achieve only some of the targets and fail on 

others. This is indicated below when relative advantages and disadvantages are listed, and exemplified in 

later sections.  

6.1.1 RH processors 

Certain processors are fabricated on dedicated RH processes. Advantages include: High tolerance to 

radiation effects, thanks to the RH process; In some cases, such processors achieve high performance. 

This can be especially true when using custom design methods similar to those employed for the design 
of COTS high- performance processors; Compatibility with similar COTS devices (example: PowerPC). 

This results in easy migration of codes and application to the space environment; This approach can offer 

high level of integration, including the inclusion of special I/O controllers dedicated to space applications.  
 

The disadvantages of using RH processes include: High cost—RH processes have limited use and the 

high price of modern fab (in excess of one billion dollars) is amortized over a very small market; Not 

widely available—there are only about couple of RH fabs in the USA and no similar advanced processes 
elsewhere. Use of the RH processes in the USA is ITAR controlled and is not widely available to non-

USA customers;  
 

  



ARTEMIS Call 2013, project 621429  EMC² 

 

 

 

D9.2 Space Application Concept Report     Page 19 of 36 

6.1.2 RHBD Processors, a bridge toward future European multiprocessor  

 

This family contains processors that are designed as ASIC and fabricated on commercial CMOS 

processes. Radiation hardness is achieved by design techniques in the layout, circuit, logic and 
architecture areas, hence the name Radiation Hardening by Design (RHBD). Advantages of this family 

include high tolerance to radiation effects (higher than RH processors), medium cost—more expensive 

than COTS processors, mostly due to low production quantities and high cost of qualification, but at the 
same time, they are less expensive than RH processors thanks to using a regular commercial fabrication 

process. Finally, RHBD processors can offer high integration (inclusion of I/O controllers dedicated to 

space applications) since they are designed as ASIC and since typically the CPU itself takes only a small 
portion of the silicon die. Disadvantages of RHBD processors—they are usually slower than COTS 

processors since they are designed as ASIC chips and not as custom processors. 

 

Most RHBD processors are based on the successful European LEON architecture.  
 

 The SPARC V7 ERC32 and TSC695FL are made by Atmel in France [01]. Originally a 3-chip 

set, it is now a single chip CPU. It has been used in a large number of satellites and systems in 

Europe and elsewhere. It achieves 12 MIPS / 6 MFLOPS at very low power (0.3W for the core 
excluding I/O). The OBC695A V7 SBC is offered by SSTL using Atmel’s TSC695. Tiger V7 is 

another SBC offered by Saab Aerospace using Atmel’s TSC695.  

 Atmel LEON2 AT697 provides a major step forward from the TSC695FL SPARC V7 processor. 

It is a LEON2 SPARC V8 processor [02] [03], based on IP core provided by Aeroflex Gaisler. 

The chip includes the processor, memory interface and a PCI interface and executes at 70-80 
MHz. Astrium has developed a SoC derivative of LEON2 named MDPA (Multi-DSP/ μProcessor 

Architecture) featuring LEON2 at 70 MHz, I/O controllers for 1553, SpaceWire, and CAN [04] 

[05]. The SoC contains a DSP module with modem, encoder and decoder (suitable for high speed 
TM/TC, 600 Kbps each direction).  

 Aeroflex Gaisler has developed a SPARC V8 processor (LEON3) and SoC architecture and 

implemented it on ACTEL RTAX rad-hard FPGA [06]. This development revolutionized this 

field: With rad-hard FPGA, such processors are more widely available and can be customized to 
specific needs. The main limitation is that ACTEL RTAX FPGA parts are ITAR controlled. The 

second limitation is performance (clock rate below 25 MHz).  

 Saab Aerospace has developed another SoC based on the LEON2FT code-named. COLE [07], 

intended for their Panther SBC [08]. The SoC design demonstrates a high level of integration, 

incorporating multiple 1553, SpaceWire and CAN interfaces among others. Astrium has 
developed SCOC3, a SoC based on LEON3, incorporating a very large set of I/O cores [09] and 

fabricated on Atmel RH 0.18u process (ATC18RHA).  

 Thales Alenia Space developed LEONDARE LEON3 SoC for space. It is based on IMEC DARE 

RHBD library, which achieves density of 25Kgates/mm2. The architecture combines LEON3 
CPU with 3 SpW+RMAP and other cores, planned for 208-pin CQFP and fabricated on UMC 

commercial 0.18u process through Europractice shuttle service.  

 Aeroflex has released UT699, another LEON3FT SoC, that combines PCI bus with several on-

chip serial IO cores: 4 SpW, CAN and Ethernet. The ASIC is implemented on 0.25u CMOS, 
packaged in 352-pin CQFP, operates at 66MHz, and dissipates 5W.  

 Aeroflex Gaisler and Ramon Chips developed GR712RC, a dual-core LEON3FT SoC fabricated 

on TowerJazz 0.18u CMOS. It contains multiple I/O cores and executes at clock rates higher than 

100MHz, dissipating less than 2W. In order to support high reliability and high speed and avoid 

the risks associated with high pin count packages in space applications, a 240-pin CQFP package 
is used. The processor periphery architecture is based solely on serial I/O cores employing an I/O 

switch matrix to reduce the number of actually required I/O pins. 

 
RHBD with LEONs processor constitute the bridge toward future European multiprocessors. 
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6.1.3 8.1.3 Single COTS Processor with Time Redundancy (SIFT)  

 

In this approach, a single COTS processor is used together with Software Implemented Fault Tolerance 

(SIFT), which executes the entire software or certain software sections twice or more. There are two 
levels of granularity: Instruction level redundancy, where each instruction is executed twice and 

additional instructions compare the results, requiring compiler transformation of the code, and procedure 

level redundancy, where the programmer writes the code to invoke certain procedures twice, compare the 
results and use software for recovery in case of mismatch. The latter approach may also require some 

additional hardware to protect the critical data and the critical software. The main advantage of this 

approach is that it is relatively inexpensive. The principal disadvantage (in addition to the added 
complexity of programming) is the performance penalty: Executing some code twice, comparing the 

results and recovery in cases of mismatch typically incur substantial performance penalty, possibly 

nullifying the performance gained by using high speed COTS processors. Three SIFT examples are 

known:  
 

 CNES created DMT, time replication for COTS microprocessors. Critical software sections are 

executed twice, compared and a recovery is initiated in case of fault. DMT uses SEE-protected 
storage to assure safe context. The replication overhead requires processor 4 times faster than the 

required processing capability. DMT is only a design idea, yet to be implemented in real 

hardware.  

 Another example is a time replication technique based on an instruction level approach that has 
been developed by Politecnico di Torino (Polito). 

 The third one is the ARGOS COTS vs. RH experiment: Stanford University researchers 

developed the EDDI technique (Error Detection by Duplicated Instructions) implemented in the 
USAF ARGOS satellite (launched in 1999), based on the IDT-3081 commercial processor 

(R3000 instruction set). Each instruction is executed twice.  

6.1.4 8.1.4 Triple COTS: TMR at the system level  

 
TMR (Triple Modular Redundancy) architectures combine three COTS processors and voting logic. The 

processors do not need to be stopped on SEU. TMR offers high performance (high end COTS such as the 

latest Pentium or PowerPC processors may be used) and high SEU tolerance –SEU errors, resulting in 
erroneous bits at the outputs of the processors, are fixed. The downside of TMR is high cost, requiring 

large area/volume and power, as well as special hardware for voting and usually additional hardware and 

software for recovery from internal SEU errors (inside the processors) that cannot be fixed by voting and 
require scrubbing or reset. Two TMR examples are known: 

 

 One example of TMR is Maxwell SCS750 SBC, based on three IBM PowerPC750FX 1.6 GIPS 

(800 MHz) micro-synchronized microprocessors (i.e. working in lock-step) operating in TMR 
mode, with a centralized voter integrated in a rad-tolerant FPGA that is functionally immune to 

upsets.  

 Another example is EADS DMS-R, a computer board based on ERC32 (Atmel TSC695) 
processor, and a fault-tolerant TMR version using 3 boards for the ATV of the ISS (Autonomous 

Transport Vehicle of the International Space Station). 

6.1.5 8.1.5 TTMR on COTS VLIW processors 

 
COTS VLIW processors execute multiple instructions in parallel, and the parallel instruction streams are 

pre-programmed. SpaceMicro (USA) implemented this capability for “time TMR (TTMR),” where each 

instruction can be executed three times and the results can be compared and voted, all within the same 
VLIW processors. TTMR offers high performance (in fact, TTMR processors are the fastest available 

space processors today) and high SEU tolerance, thanks to embedded TMR mechanism, but it is 

expensive, is limited to VLIW processors, and is hard to generate code for.  
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The only known examples are SpaceMicro Proton 100k and 200k. The code executes two copies of an 

instruction, compares the result, on mis-match executes the same instruction the third time and compares 

for majority voting. Proton 100k SBC uses Equator BSP-16 (up to 1200 MIPS) and Proton 200k SBC 

uses TI 320C64xx (up to 4,000 MIPS fixed point or 900 MFLOPS). 
 

As part of the space processor literature survey, the following picture show the results of the analysis did 

by Ramon Chips that reported or estimated performance of the surveyed processors. As can be seen in 
this figure, TTMR and TMR provide the highest performance, followed by modern RH. Majority of the 

other processors are based on RHBD solution which is privileged by European Industries for ESA space 

programs. 
 

 
Figure 9: Performance of space processors done by Ramon Chips in the 2012 

 

Indeed ESA has invested in the last years studies for space processors for Paylaod and platform 

applications. In this study it has been collected information, requirements and performance for both PL 
and platform mission. In this study ESA is pushing for having ITAR free processor requirement.  

 

 [01] http://www.atmel.com/dyn/resources/prod_documents/doc4204.pdf 

[02] http://microelectronics.esa.int/mpd2007/AT697F.pdf  
[03] http://www.atmel.com/dyn/resources/prod_documents/doc 4226.pdf  

[04] http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=196&Itemid=151 

[05]http://microelectronics.esa.int/mpd2007/MDPA_Pres_Mar ch_2007.pdf  
[06] http://www.astrium.eads.net/equipment-product-

catalogue/productcatalogue/products/communication-payload-control-and-processing-unit  

[07] http://www.gaisler.com/cms/index.php?option=com_conte nt&task=view&id=196&Itemid=151    

[08] http://www.itrs.net/   
[08] http://microelectronics.esa.int/mpd2007/SCOC3- MPD2007.pdf 

  

http://www.atmel.com/dyn/resources/prod_documents/doc4204.pdf
http://microelectronics.esa.int/mpd2007/AT697F.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc%204226.pdf
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=196&Itemid=151
http://microelectronics.esa.int/mpd2007/MDPA_Pres_Mar%20ch_2007.pdf
http://www.astrium.eads.net/equipment-product-catalogue/productcatalogue/products/communication-payload-control-and-processing-unit
http://www.astrium.eads.net/equipment-product-catalogue/productcatalogue/products/communication-payload-control-and-processing-unit
http://www.itrs.net/
http://microelectronics.esa.int/mpd2007/SCOC3-%20MPD2007.pdf
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6.1.6 European High-Performance Space Processors 

 

Present-day satellites carry very weak payload and platform computing performance capabilities. In the 

future, powerful onboard computing is desired. However, electric power for this task is quite limited. This 
section examines the state-of-the-art available space computer with particular emphasis on multicore 

processors with high-performance low-power space computers. 

 
ESA has defined within their SAVOIR (Space Avionics Open Interface aRchitecture, [SAVOIR]) 

Initiative working group, a reference architecture for onboard data handling defining the basic building 

blocks for a typical onboard processing system. Both onboard computers and payload computers elements 
are driven in future applications by the need to achieve increasing processing performance, but under the 

constraint of not increasing in parallel the complexity for the applications programmer and minimal 

increase in power consumption. These constraints are mandatory for acceptance of novel approaches to 

improve onboard computing performance. EMC2 addresses this coupling of a novel computing HW 
architecture with a higher layer programming model, both of which need to be developed and optimised 

jointly. 

 

 
 

For future demands in processing performance ESA has provided an assessment of the state of the art and 

has laid out its plans and expectations recently in technology dossiers for onboard computers, 
microelectronics and payload data handling [09, 10]. 

 

The general outcome is that space applications will require processors reaching upwards of 1 GFLOPS at 
low power. However, no existing platform achieves this performance. Likewise no platform currently 

under development claims to deliver this performance in the near future. Note in contrast that each rad-

hard Processor core processor unit taken into account for EMC, may have different performance in terms 

of GOPS with dissipating power > 3W. 
 

The above figure (source: [09]) shows the current state of the art in Europe and the competitiveness to 

ITAR-controlled products. The figure illustrates clearly that: 

1. The current available HW falls far behind the requirements in terms of processing performance 

(performance values in the above are normalised to ERC32 which offers 10MOPS and 

5MFLOPS; relative value of 200, way above the top of the figure, would mark the sought 1 
GFLOPS target 
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2. Up to date (2015) this gap cannot has not been filled by currently planned products 

3. European space products are not competitive at all in that aspect, compared to the US market 

This clearly indicates the need for novel concepts like EMC
2
 to close this gap and regain competitiveness 

of the European industry. ESA forecasts that a “next generation space digital processor” will perform 
about 1 GFLOP while dissipating about 1 Watts, or 10 Watts per 1 GFLOPS for a massively parallel 

processor FPGA. This is in line with the roadmap of space industries and in line with the need to 

concentrate in a multicore-processor heterogeneous application like avionics application where some inter 
satellite link functions are allocated. 

 

Despite that it important to distinguish between platform and PL space processor. The latter indeed is 
requested to have more performing wrt the first one that instead is requested to have multi-functionalities 

and to implement heterogeneous routine. 

 

[09] Technical dossier on data systems and onboard computers, ESA, TEC-EDD/2011.109/GM 
[10 ] Technical dossier on onboard payload data processing, ESA, TEC-EDP/2011.110/MS 

6.1.7 Considerations on the ARM processors family 

 
ARM is a leader in microprocessor Intellectual Property. ARM [10] has also targeting his research to the 

space industry providing a wide range of products. 

 

ARM is the industry's leading supplier of microprocessor technology, offering the widest range of 
microprocessor cores to address the performance, power and cost requirements for almost all application 

markets. The ARM Cortex is a family of microprocessors introduced in 2005 by ARM Holdings and 

based on the ARMv7 instruction set. The Cortex family is divided into series A (Application), the R 
series (Realtime) and the M series (Microcontroller). The A series is the series addressed to applications 

processors for smartphone, mobile computing, infrastructure, consumer  electronics, netbooks and 

servers. The R-series is developed for real time applications, hard drives and mission-critical systems, 
while the M-series is a microcontroller family for engine and industrial control, flash drives and smart 

cards.  

 

The Cortex-R4 [11] processor is designed for implementation on advanced silicon processes with an 
emphasis on improved energy efficiency and real-time responsiveness. Cortex-R4 is a 32-bit processor 

based on the v7R architecture. Cortex-R4 offers support for multicore with Redundant dual-core 

capability. The Cortex-R4 has 8-stage-dual-issue pipeline in-order with branch prediction. A typical 
configuration is capable of delivering up to 650 Dhrystone MIPS of performance and a good value for 

Energy-efficiency, 10 DMIPS/mW.  

 
The ARM Cortex-M0 [12] processor is the smallest ARM processor available. The exceptionally small 

silicon area, low power and minimal code footprint of the processor enables developers to achieve 32-bit 

performance at an 8-bit price point, bypassing the step to 16-bit devices. The ARM
®
 Cortex

®
-M0+ 

processor is the most energy efficient ARM processor available. It builds on the very successful Cortex-
M0 processor, retaining full instruction set and tool compatibility, while further reducing energy 

consumption and increasing performance. An optimized architecture with a core pipeline of just two 

stages, enables the Cortex-M0+ processor to achieve a power consumption of just 9.8µW/MHz (90LP 
process, minimal configuration), while raising the performance to 2.42 CoreMark/MHz. 

 

The ARM architecture could be a suitable solution for space applications. Indeed at the current state the 

only known Radiation Hardened implementation is from Silicon Space Technology, a privately held 
American fabless semiconductor company,[13] which has developed an ARM based processor offering 

superior radiation  performance > 300 Krad and latch-up immunity (SEL) in  extreme environments. The 

PA32KASA contains an embedded ARM Cortex-M0 processor with related peripherals supported. It 
provides 32 Dedicated General Purpose I/O (GPIO) pins, 32 General purpose counter/timers, 2 UARTs 
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end 2 Serial Peripheral Interface (SPI) controllers. It’s clock rate is 50MHz @ 25⁰C, with a low power 

3.3V I/O and 1.5V Core. 

 

[10] http://www.arm.com/products/processors 
[11] http://www.arm.com/products/processors/cortex-r/cortex-r4.php 

[12] http://www.arm.com/products/processors/cortex-m/cortex-m0.php 

[13] http://www.siliconspacetech.com/product-type/rad-hard 
 

6.1.8 Multi-core processor for EMC
2
 avionic applications  

The survey performed in the previous chapter show the available space processors distinguished by 

European and not European products, performances and mission requirement. As introduced, an 
important parameter for selecting the right processor is final application for space mission (i.e. payload 

and platform). 

 
For EMC

2
, some functionalities for avionic and inter satellite link need to be implemented in a single 

processor at platform level. Some requirements have been identified in the frame of EMC
2
 project and the 

space processor survey can help in the selection of the right products. A European multiprocessor seems 
to be the better solution for this kind of application in the frame of EMC

2
. The recently multiprocessor 

product for space application has been realized by Gaisler Research and sponsored by ESA. 

 

The LEON4 indeed is a synthesizable VHDL model of a 32-bit processor compliant with the SPARC V8 
architecture. The model is highly configurable, and particularly suitable for system-on-chip (SOC) 

designs. 

 
The core [11] is interfaced using the AMBA 2.0 AHB bus and supports the IP core plug&play method 

provided in the Aeroflex Gaisler IP library (GRLIB). The processor can be efficiently implemented on 

FPGA and ASIC technologies and uses standard synchronous memory cells for caches and register file. 
The processor supports the MUL, MAC and DIV instructions and an optional IEEE- 754 floating-point 

unit (FPU) and Memory Management Unit (MMU). The LEON4 cache system consists of separate I/D 

multi-set Level-1 (L1) caches with up to 4 ways per cache, and an optional Level-2 (L2) cache for 

increased performance in data intensive applications. The LEON4 pipeline uses 64-bit internal load/store 
data paths, with an AMBA AHB interface of either 64- or 128-bit. 

 

Branch prediction, 1-cycle load latency and a 32x32 multiplier results in a performance of 1.7 
DMIPS/MHz, or 2.1 Coremark/MHz. 

 

 

http://www.arm.com/products/processors
http://www.sparc.org/
http://www.sparc.org/
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The wider interfaces provides higher bus and memory bandwidth which is necessary when designing 

ASICs with high clock frequencies (800 MHz and above). The LEON4 is fully software compatible with 

previous LEON processors. The configurability of LEON4 allows designers to optimize the processor for 
performance, power consumption, I/O throughput, silicon area and cost. 

 

LEON4 can be utilized in both asymmetric multiprocessing (AMP) and symmetric multiprocessing 
(SMP) configurations. A typical four-processor system is capable of delivering up to 4300 Dhrystone 

MIPS at 800 MHz. 

 
The basic LEON4 processor core (pipeline, cache controllers and AMBA AHB interface) consumes 

approximately 30,000 gates and can be implemented on ASIC and FPGA technologies. The processor can 

reach 125 MHz using Xilinx Virtex-5 FPGAs, or 1500 MHz on fast 32 nm standard-cell technologies.  

 
To save power the LEON4 supports power down mode, individual processor shutdown and clock gating. 

For the use case of EMC
2
 platform application, LEON 4 multi-processor is considered the better solution 

for avionic application. 
 

[11] http://www.gaisler.com/doc/LEON4_32-bit_processor_core.pdf 

 

6.2 Status of the Partitioned Software Architecture (TSP) for avionics 

applications Survey 
 

The ARINC 653 specification, defined for aerospace applications, has the goal of providing a standard 
interface between a given real-time operating system (RTOS) and the corresponding applications. It also 

provides robust partitioning, with the final goal of guaranteeing safety and timeliness in mission-critical 

systems. 

 
Partitioned sofware architectures were conceived to fulfill the above requirements. Both, the availability 

of new processors and an increased necessity of security, have opened new possibilities to use efficiently 

this approach. The aerospace sector is adapting these concepts on its developments. One of the solutions 
used to achieve partitioned systems is based on virtualisation techniques. In the following sections we 

present some operating system suitable to spacial purpose. 

 

8.2.1 RTEMS 
 

RTEMS (Real-Time Executive for Multiprocessor Systems) [1] is a real time operating system (RTOS) 

designed for embedded processing platforms. Initially developed for military applications, the acronym 
RTEMS originally stood for Real-Time Executive for Missile Systems or Real-Time Executive for 

Military Systems. RTEMS is an open source project, actively maintained by On-Line Applications 

Research Corporation (OAR). 
 

RTEMS can be modeled as a series of layered components (Figure 10) able to provide a set of services to 

a user application characterized by real time requirements. The executive interface exposed to user 

applications are grouped into sets called logical resource manager. 
 

http://www.gaisler.com/doc/LEON4_32-bit_processor_core.pdf
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Figure 10: Schematization of RTEMS operating system architecture 

 

The common functions shared by various managers (for example, scheduling, dispatching, object 
management) are implemented into an executive core. This core is based on a set of low-level software 

procedures, whose implementation depends on the specific CPU. 

 
RTEMS supports various standard Application Programming Interfaces (API), such as POSIX API and 

μITRON API. It also includes a proprietary API (called Classic RTEMS API) originally based on Real-

Time Executive Interface Definition (RTEID) specific.  
 

By means of a flexible plugin system, RTEMS allows the user to select different scheduling algorithms or 

to include a customized algorithm able to satisfy the requirements of a specific application. RTEMS 

default scheduling algorithm (Deterministic Priority Scheduling, DPS) implements a priority scheduling 
with preemption control. By selecting this algorithm, the processor is allocated using a priority-based 

scheduling algorithm, whereas a round robin policy is used to switch between tasks belonging to groups 

with the same priority level. 
 

The algorithm guarantees that the tasks executed in a generic instant have the highest priority level among 

all tasks in the ready state. Tasks with the same priority level are then scheduled according to a FIFO 
policy. 

 

RTEMS does not provide any form of memory management and there is no concept of process: basically, 

it implements a POSIX single-process, multithreaded environment. RTEMS defines partitions as 
contiguous areas of memory divided into fixed size buffers that can be allocated and de-allocated. The 

system maintains and manages the partitions as a list of buffers. 

 
RTEMS defines messages as user defined, variable length buffers supporting the storage of the 

communication information. Message exchange between tasks and Interrupt Service Routines (ISR) is 

managed by means of a message queue and a FIFO mechanism. RTEMS provides synchronization 

mechanisms (waiting for the arrival of a message in the message queue, polling of the message queue for 
the verification of the message arrival). A task manager handles communication and synchronization. 

 

Currently, RTEMS can be used on a single processor system (as a single software instance) or in a 
multiprocessor system, supporting both asymmetric and symmetric configuration. As for symmetric 

multi-processing mode, RTEMS provides appropriate versions of its scheduling algorithms extended to 

the SMP case. 
 

RTEMS supports the main processing architectures used in aerospace systems, such as SPARC and 

LEON, PowerPC, MIPS, and ERC32. RTEMS includes a porting of the FreeBSD TCP/IP stack and 

supports various file systems (for example NFS and FAT). 
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8.2.2 VXWORKS RTOS 

 

Wind River VxWorks [2] is a real-time networked operating system, specifically designed for the use on 

distributed processing platforms. It complies with the requirements of various safety standard (for 
example, DO-178C/EUROCAE ED-12C Level A, ARINC 653 and IEC 61508). 

Figure 2 schematizes VxWorks system architecture. 

 

 
Figure 11: Layered architecture of WindRiver VxWorks operating system 

 

VxWorks supports space partitioning by means of appropriate isolated memory containers based on 

different virtual memory context. VxWorks manages these contexts via the Memory Management Unit 

(MMU). The temporal partitioning is supported by means of a scheduling mechanism with preemption. 
Also in this case, the scheduler is organized in two levels, a priority-base scheduling and a round robin 

scheduler. The scheduling is static, but it is possible to modify the priority of a task at runtime. 

 
The basic execution unit of VxWorks is the task, roughly corresponding to a UNIX process. A task can be 

created, deleted, suspended or interrupted (preempted) by other tasks or task itself. Each task has its own 

set of registers and stack area. Tasks can communicate using UNIX-like inter-processor communication 

mechanisms. 
 

The VxWorks kernel (Wind kernel) provides semaphores as basic mechanism for task synchronization 

and for the implementation of mutual exclusion mechanisms. Messages, queues, pipes, sockets, and 
signals supports instead the communication between tasks. VxWorks also provides shared memory 

objects for the implementation of messages between tasks running on different processors. 

 
VxWorks provides native support to the multicore environment, using either symmetric or asymmetric 

mode [3]. It also provides the possibility of leveraging an AMP/SMP mixed mode. VxWorks supports 

different hardware architectures (e.g. Intel i960, Intel i386, MC680x0, MC683xx, R3000, SPARC, and 

SPARClite) and provides different APIs (POSIX PSE52, ARINC API, Ada and C). 
 

8.2.2.1 Wind River MILS Platform 

 
WindRiver MILS platform [4] is a solution for the development of devices and systems with high degree 

of safety. The MILS approach is exploited to ensure a secure allocation of resources and support 

application isolation. This allows creating a safe and partitioned run-time environment able to provide an 
efficient base platform for the implementation of secure systems. As required by MILS Specification, a 

separation kernel is used to create and manage partitions and guarantee the spatial and temporal isolation. 

The application code runs in user-mode within a single partition, usually on the top of an operating 

system.  
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Figure 12: WindRiver MILS platform schematization 

 
The VxWorks separation kernel is based on a two-level, high performance scheduler capable of ensuring 

a reduced overhead in context switching between virtual boards. The separation kernel manages the first 

level scheduling, executing the virtual boards in a predefined order. A predetermined time interval within 

the overall period of scheduling is assigned to each virtual board. The guest operating system running 
inside the virtual board manages a second-level scheduling, executing threads, tasks and processes 

according to a local scheduling policy.  

 
An interesting feature offered by the MILS platform is the possibility of transferring a fraction of 

allocated execution time from a virtual board to another. This allows to increase the performance (i.e. 

reducing latency in communications, if the time is assigned to a virtual board that runs device drivers), 

while retaining robustness characteristics. 
 

In a WindRiver MILS based system, the virtual board acts as isolated containers for the allocation of user 

applications. As mentioned, the virtual board are schedulable entities and have their own memory space 
and a set of allocated physical hardware resources. This ensures spatial isolation and avoids interferences 

between the various resources.  

 
Communication is managed by the MILS secure inter-partition communication (SIPC) component. This 

component handles the communication between virtual boards, ensuring the secure and reliable delivery 

of data. The SIPC programming interface is derived from the sampling and queuing ports mechanism 

specified by ARINC 653 APEX. The communication model is based on unidirectional channels, with 
specific policies controlling the security of the flow. 

 

Alternatively, it is possible to use shared memory as data exchange mechanism (but its use is 
recommended only for applications with the same level of criticality). The regions of shared memory 

have configurable access privileges, and they may be useful for the support of legacy applications and 

device drivers based on this communication mechanism. 
 

VxWorks MILS Platform is distributed in various version, each one targeting a specific application 

domain. In particular, one version is dedicated to the support of multi-core platforms and asymmetric 

multi-processing. Each processor runs its own instance of the MILS framework and mechanisms for the 
exchange of messages between partitions running on different cores are supported. 

 

WindRiver MILS Platform supports various possible execution environments and operating systems. For 
example, it is possible to cite: 

 High Assurance Environment (HAE), a reduced footprint runtime environment supporting critical 

security features. 

 VxWorks Guest OS, a real-time operating system with high level of reliability. 
 

WindRiver Linux Guest OS, a complete version of the Linux kernel, specifically designed to enable 

legacy Linux applications reuse. The VxWorks fully supports the Intel, ARM, PowerPC/Freescale targets. 
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On the other hand with reference to the LEON4 target only the 6.7 version has been ported by 

AEROFLEX Gaisler; the most recent version which is 7 has not been ported on the LEON4. 

 

8.2.3 PIKEOS  
 

PikeOS [6] is a platform providing an RTOS, a type I hypervisor and paravirtualization functionalities. 

PikeOS allows to satisfy the critical requirements of Integrated Modular Avionics (IMA) systems, such as 
MILS security requirements, and supports many general features usually provided by traditional 

virtualization software. 

PikeOS architecture is based on a compact micro-kernel providing a set of services. Figure 13 
schematizes the software architecture.  

 
Figure 13: Schematization of PikeOS architecture 

 
Two different software layers compose the intermediate layer between the partitions and the hardware: 

 The PikeOS System Software implements partitions, which are applications that run in a secure 

environment. 

 The microkernel provides preemptive multitasking, implementing a scheduling policy based on 
priorities and supporting the management of time and space.  

 

PikeOS software system, built on top of the microkernel, provides many services that are traditionally in a 
monolithic kernel as boot applications or file reading. PikeOS supports both native application 

programming interfaces (APIs) and ARINC 653 APEX specification. 

 
PikeOS scheduler combines time-driven and priority-driven approaches. Specifically, the scheduling 

period is subdivided in a number of time slices and each time slices is dedicated to each virtual machine. 

Virtual machines are thus scheduled periodically, receiving a fixed amount of processing resources. This 

guarantees the time determinism (as virtual machine are executed at fixed time instants) and real time 
performance. Additionally, a two level priority scheme for virtual machine is adopted, associating a mid-

level priority to virtual machine executing time critical tasks and low-level priority to virtual machine 

executing non-critical tasks. The latter group of virtual machines are executed only when the virtual 
machines belonging to the first group are sleeping (i.e. not executing tasks), in a round robin fashion. In 

this way, hard real time requirements are guaranteed for critical application, whereas a best effort is 

adopted for non-critical ones. 
 

PikeOS supports two ways of communication between virtual machines: ARINC-653 compliant 

communication ports and shared memory objects. Ports are statically configured communication channels 

supporting message buffering for reliable and trusted communication. Shared memory objects are instead 
particularly useful for transferring large amount of data. 
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PikeOS supports a wide range of single-core or multi-core architectures (e.g. PowerPC, x86, ARM, 

MIPS, SPARC-v8/LEON, etc.). Multi-core configuration are supported both in symmetric and in 

asymmetric configurations. In the case of AMP, multiple instances of PikeOS can run in parallel on the 

different cores. In the case of SMP, the PikeOS scheduler allocates different cores to the partitions 
maintaining the strict temporal subdivision scheme mentioned above. 

 

Various host operating systems are supported for execution inside different partitions. It is possible to 
cite: 

 Embedded Linux (ELinOS) 

 µITRON 

 OSEK (AUTOSAR) 

 RTEMS 

 Windows 

Moreover, legacy RTOS can be supported with the addition of specific APIs. 

 

8.2.4 XTRATUM  
 
XtratuM [8] is an open-source, bare metal hypervisor targeting high-criticality real-time systems, which 

implements the paravirtualization principle. 

 

 
Figure 14: Schematization of XtratuM hypervisor software architecture 

 

The main components of the XtratuM architecture are the following: 

 Hypervisor: provides virtualization services to the partitions. The hypervisor is executed in 
supervisor mode and virtualizes the CPU, the memory architecture, interrupts, and some specific 

peripheral devices. 

 Hypercall interface: defining the paravirtualization services provided by XtratuM. Access to these 
services is provided through hypercalls.  

 Partitions: a partition is an execution environment managed by the hypervisor that uses the 

virtualized services. 

 
Each partition consists of multiple concurrent processes, sharing access to the processor resources based 

on application requirements. The term partition code may denote a compiled application running on a 

bare-metal machine, a real-time operating system and its applications or a general-purpose operating 
system and its applications. 

 

The scheduling mechanism adopted by XtratuM is compliant with ARINC 653 model: the hypervisor 

schedules the execution of time-critical partitions following a fixed (static) scheduling scheme, whereas 
non-critical partitions are executed into dedicated time slices (spare temporal windows). 
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XtratuM provides a virtual machine similar to the native hardware and allows the execution of a set of 

partitions (each of which may contain an operating system and its applications). The spatial and temporal 

isolation properties provided by the hypervisor guarantee the required security level. For example, 

XtratuM can be used to implement a Multiple Independent Levels of Security (MILS) architecture. 
 

XtratuM hypervisor has been originally designed targeting Intel x86 single-processor systems, and later 

extended to support SPARC architecture (i.e. Aeroflex Gaisler Leon3 processor). With the addition of 
Aeroflex Gaisler Leon4 processor support, the possibility of exploiting multicore hardware architecture 

has been also added [8]. Symmetric multi-processing has been implemented with the addition of proper 

synchronization mechanisms designed to XtratuM original design. 
 

XtratuM hypervisor supports the x86, LEON2, LEON3 and LEON4 (SPARC v8) architectures. XtratuM 

support the following execution environments: 

 XAL (XtratuM Abstraction Layer) for bare-C applications; 
 POSIX PSE51 Partikle RTOS; 

 ARINC-653 P1 compliant LITHOS RTOS; 

 ARINC-653 P4 compliant uLITHOS runtime; 
 Ada Ravenscar profile ORK+; 

 RTEMS; 

 Linux (supported only for x86 architectures). 
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7. RT-Java for space Usability Assessment  

 

High level languages, such as Java, use a more robust memory model than the usual languages used for 

embedded systems development, such as C and C++. The difficulty will using garbage collected 

languages has been the difficulty of building a garbage collection runtime that does not interfere with the 
realtime response of the system. JamaicaVM solves this problem by using a patented deterministic, 

reenterant garbage collector that runs only when a thread allocates and then for a bounded time. No 

separate garbage collection thread is necessary, so the garbage collector cannot preempt another thread. 
With this garbage collector and the sematic refinements and APIs defined by the Realtime Specification 

for Java (RTSJ), the safety advantages of Java can be used for space application that demand realtime 

response. The virtual machine concept provides an ideal platform for the dynamic system upgrade and 

reconfiguration that long running space missions need. 
 

7.1 Runtime for Realtime Java Appliciations 
 

JamaicaVM provides tools for compiling a Java program to machine code and linking it with the 

necessary runtime facilities, such as the garbage collector and platform specific libraries. In order to 
provide realtime response, JamaicaVM was design with a determinitic garbage collector and implements 

the refined Java semantics described in the RTSJ and inspired by Ada. In addition, JamaicaVM uses static 

compilation instead of Just-in-Time (JIT) compilation to ensure that code is has consistent execution 
behavior. 

 

JamaicaVM implements both priority inversion avoidance mechanisms specified in the RTSJ: priority 

inheritance and priority ceiling emulation. The former is the default, but the second can be defined for any 
Java object, upon which the program synchronizes. These mechanisms ensure that a thread in a 

synchronized block cannot be preempted by a thread with a lower priority than any thread waiting to enter 

the synchronized block. 
 

In addition to the normal Java threads, which are typically scheduled with a fair scheduler, JamaicaVM 

offers RealtimeThread and AsyncEventHandler. The RealtimeThread class provides the same 
functionality of the java.lang.Thread class, except it can be scheduled by the priority preemptive FIFO 

scheduler. AsyncEventHandler can also be scheduled by the priority preemptive FIFO scheduler, but a 

handler encapsulates a bit of code that is run each time it is released. A handler can be released by a 

Timer, an external event, or other software. These two facilties provide the basic framework for writing 
realtime code. 

 

Conventional Java implementations use a JIT to provide performance in code running in a virtual 
machine. The code is loaded as bytecode and then compiled after to has been executed some small 

number of times. This presents an additional problem for realtime systems, because the worst case 

execution time may be quite a bit longer than the average case. JamaicaVM solves this problem by using 

static compilation of bytecode to machine code. 
 

JamaicaVM also provides the RTSJ facilities for accessing memory outside the Heap. This is primarily 

meant for accessing device registers. Memory mapped I/O can be done with conventional Java NIO byte 
buffers. 

 

7.2 Space Application Framework 
 

A Realtime Java runtime is not sufficient for applications that may run continuously for weeks, months, 
or even years at a time and then need to be safely updated in flight. Therefore aicas is developing a 

framework on top of JamaicaVM, that provides secure over-the-air code update and replacement, 

lifecycle control, and resource management. This framework will enable mission control to dynamically 

update and replace services during a space mission, without interfering with other code running on the 
framework. 



ARTEMIS Call 2013, project 621429  EMC² 

 

 

 

D9.2 Space Application Concept Report     Page 33 of 36 

 

The framework will include an OSGi runtime environment for basic lifecycle support. The code bundles 

will be modified to provide stronger separation between bundles and basic resource management. Each 

bundle will have its own memory management and provide both time and space partitioning between 
bundles. Multicore systems will be supported with the ability to map bundles to specific cores. A tool will 

be developed to compile bytecode in a bundle that the framework can dynamically link and load into a 

running system, so that dynamically loaded code can benefit from static compilation as well. 
 

 

 

Figure 15: Bundle Management 

 

Each bundle will need to specify both the permission reqired for its task and the percentage of CPU time 

it requires. The framework will ensure that the bundle does not exceed its time requirements and does not 
access any API for which it is not authorized. Authorization will use X.509 certificates to validate a 

bundles source before it is installed. 

 
Some special bundles will be provided to monitor the system, to provide over-the-air bundle installation, 

and to provide lifecycle control. These bundles will communicate with Mission Control over a secure 

messaging protocol. Additional bundles will also be provided to support space applications. 
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8. Conclusions 

In the scope of the EMC2 activities it has been evaluated to focus the activities on Time/Space Partitioned 

environments on top of LEON4 processor. This supports the decision to include in the activity both the 

PikeOS and the XTRATUM solutions, based on the following considerations: 

 
 They are available for the selected SPARC LEON4 target processor; 

 They support a Time/Space Partitioned environment on the selected target processor; 

 They implement paravirtualization on the selected target processor; 
 They have reached a good maturity level and are fully supported on the selected target processor. 

 

The RTEMS is considered as a possible Guest Operating System in the scope of the virtualized / parti-

tioned system, in particular for the XTRATUM which does not include its own runtime environment 
(unlike PikeOS which sports its own “PikeOS personality” runtime environment). 

 

  



ARTEMIS Call 2013, project 621429  EMC² 

 

 

 

D9.2 Space Application Concept Report     Page 35 of 36 

9. References 

 
[1] On-Line Applications Research Corporation. RTEMS C User’s Guide, Edition 4.10.99.0, for RTEMS 

4.10.99.0. Technical Manual, 2013. 

[2] Wind River Systems, Inc. VxWorks Reference Manual. Technical manual. 

[3] Wind River Systems, Inc. Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel® 

Multicore Processors. White paper. 

[4] Wind River Systems, Inc. Wind River VxWorks MILS Platform, white paper, 2013.  

[5] SYSGO AG, PikeOS Fundamentals, datasheet, 2009.  

[6] S. Fisher. Certifying Applications in a Multi-Core Environment: The World’s First Multi-Core Certification to 

SIL 4. SYSGO AG white paper, 2013. 

[7] M. Masmano, I. Ripoll, and A. Crespo. XtratuM: a Hypervisor for Safety Critical Embedded Systems. 11th 

Real-Time Linux Workshop. Dresden. Germany, 2009. 

[8] E. Carrascosa, M. Masmano, P. Balbastre and A. Crespo. XtratuM hypervisor redesign for LEON4 multicore 

processor. ACM SIGBED Review, 11(2), 2014. 

 

  



ARTEMIS Call 2013, project 621429  EMC² 

 

 

 

D9.2 Space Application Concept Report     Page 36 of 36 

10. Abbreviations 

 

Table 1: Abbreviations 

Abbreviation Meaning 

EMC2 Embedded multi-core systems for mixed criticality applications in dynamic 

and changeable real-time environments 

µC Micro-Controller 

PL PayLoad 

RH Radiation Hardened 

 


