
ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 1 of 40

Embedded multi-core systems for

Mixed criticality applications

in dynamic and changeable real-time environments

 Project Acronym:

EMC²

Grant agreement no: 621429

Deliverable

no. and title

D10.5 Final design and implementation

 (completed and final demonstrations)

Work package WP10 Industrial Applications and Logistics

Task / Use Case Tasks T10.1, T10.2, T10.3, T10.4

Lead contractor Infineon Technologies AG

Dr. Werner Weber, mailto: werner.weber@infineon.com

Deliverable

responsible

Danfoss Power Electronics A/S

Dr. Juha Kuusela, mailto: juha.kuusela@danfoss.com

Version number v1.0

Date 28/12/2016

Status Final

Dissemination level Prototypes public

Copyright: EMC2 Project Consortium, 2016

mailto:werner.weber@infineon.com
mailto:juha.kuusela@danfoss.com

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 2 of 40

Authors

Partici-

pant no.

Part.

short

name

Author name Chapter(s)

01R NXP Kiran Shekhar T10.2

05A Danfoss Juha Kuusela T10.1

09B UTRC Juan Valverde Alcala,

Stylianos Basagiannis

T10.1

15Q ITI Javi Cano T10.4

04A, 04B BUT,

NXP CZ

Petr Blaha T10.1

15R AMBAR Ignacio Ara Isusi T10.3

Document History

Version Date Author name Reason

v0.1 30/11/2016 Kiran Shekhar (mailto:

kiran.shekhar@nxp.com)

Initial version, content for T10.2

v0.2 30/11/2016 Kiran Shekhar (mailto:

kiran.shekhar@nxp.com)

Integrated review comments from Juha Kuusela

(WP10 leader) to T10.2

v0.3 12/12/2016 Juha Kuusela (mailto:

juha.kuusela@danfoss.com)

Added initial version of T10.1

v0.4 12/12/2016 Stylianos Basagiannis

(mailto:basagis@utrc.utc.com)

Juan Valverde Alcala

(valverj@utrc.utc.com)

Added T10.1 UTRC contribution

v0.5 13/12/2016 Javier Cano (mailto: jcano@iti.es) Added contents of T10.4

v0.6 18/12/2016 Juha Kuusela (mailto:

juha.kuusela@danfoss.com)

Composition, format, editing and conclusion

v0.7 19/12/2016 Javier Cano (mailto: jcano@iti.es) Updates to T10.4

v0.8 20/12/2016 Petr Blaha (mailto:

Petr.Blaha@ceitec.vutbr.cz)

Updates to T10.1

v0.9 22/12/2016 Juha Kuusela (mailto:

juha.kuusela@danfoss.com)

Updates to T10.1

v0.95 22/12/2016 Ignacio Ara Isusi (mailto:

iara@ambar.es)

Added contents to T10.3

v1.0 28/12/2016 Juha Kuusela (mailto:

juha.kuusela@danfoss.com)

Language and style

28/12/2016 Alfred Hoess Project internal review; final editing and

formatting; deliverable submission

mailto:kiran.shekhar@nxp.com
mailto:kiran.shekhar@nxp.com
mailto:juha.kuusela@danfoss.com
mailto:basagis@utrc.utc.com
mailto:valverj@utrc.utc.com
mailto:jcano@iti.es
mailto:juha.kuusela@danfoss.com
mailto:jcano@iti.es
mailto:juha.kuusela@danfoss.com
mailto:juha.kuusela@danfoss.com

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 3 of 40

Publishable Executive Summary

The ultimate objective of the EMC2 project (and WP10 in that context) is to establish Multi-Core

technology in all relevant Embedded Systems domains. The embedded systems segment is currently going

through a disruptive innovation process. Different kinds of systems are connected to each other, boundaries

of application domains are alleviated and interoperability plays an increasing role. Formerly closed systems

are forced to be opened up. As Multi-core and Many-core processors increase their visibility in the

embedded systems domain, their exploitation for critical and real-time applications is presently too slow,

inefficient and expensive.

This development leads to the fact that system components that have previously been embedded and

executed in separate hardware can now share the same hardware, thus resulting in new challenges for safety

requirements. At the same time multiple cores potentially allow different types of functions to stay

separated where necessary.

This document gives a brief description of final prototypes and design of all the four use cases of WP10

within the industrial domain (or Living Lab 10 for Industrial manufacturing & logistics). The four use cases

represent four different industrial applications: (1) Variable Speed Drives in Industrial Applications, (2)

Identification and Authentication, (3) Tracking and (4) Manufacturing Quality Control by 3D Inspection.

The final prototypes are publicly demonstrated.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 4 of 40

Table of contents

1. Introduction ..5

1.1 Objective and scope of the document ...5

1.2 Structure of the deliverable report ..5

2. T10.1 – UC_Drives and Electric Motors in Industrial Applications ..6

2.1 Description of the final prototypes for the Drives Use Case ..6

2.2 Description of the conceptual architecture ...8

2.3 Multi-core communication using RPMsg protocol ..15

2.4 PMSM model predictive control with field weakening implementation..15

2.5 Properties of the prototypes and relation to technical WPs ..15

3. T10.2 – UC_Identification and Authentication ..17

3.1 Functionality ...17

3.2 Architecture ..18

3.3 Assessment of MSECROT with respect to EMC2 requirements ...19

3.3.1 Key performance indicators of MSECROT ..20

3.3.2 MSECROT relationship to EMC2 objectives, KPIs & other WPs ..21

3.3.3 Final Demo of MSECROT ..23

4. T10.3 – UC_Tracking ..25

4.1 Gateway improvements ..25

4.2 Architecture and description of the prototype ..26

4.3 Relationship with other WPs ..30

4.3.1 Contribution from technical WPs ..30

4.3.2 Integration of solutions from other partners ..30

4.3.3 Evaluation of prototype against requirements ...31

5. T10.4 – UC Manufacturing Quality Control by 3D Inspection..32

5.1 Description of the final prototype...32

5.1.1 Conceptual architecture ...32

5.1.2 Communication block diagram ...33

5.1.3 Model and analysis with “art2kitekt” ..34

5.2 Experiments with the final prototype ...36

5.3 Fulfilment of Requirements ..38

6. Conclusions ..39

7. References ..40

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 5 of 40

1. Introduction

1.1 Objective and scope of the document

This document describes briefly the final design & implementation and eventually demonstration for all 4

use-cases of WP10 Industrial Manufacturing and Logistics. It is part of project milestone 8 (MS8) that is

intended to be delivered in project month (M33).

1.2 Structure of the deliverable report

The document is organized as follows: the sections 2, 3, 4 and 5 present the four use cases in WP10. Finally,

section 6 concludes the deliverable.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 6 of 40

2. T10.1 – UC_Drives and Electric Motors in Industrial Applications

2.1 Description of the final prototypes for the Drives Use Case

Industrial processes place strict requirements on the automation systems. Electric motors and Variable

Speed Drives (VSD) that operate these motors – often just called “drives” – are the backbone of industrial

automation systems. A typical industrial application is automated and controlled using multiple devices. In

general, each such device has one or more mechanical parts, which are driven by an electric motor via a

transmission system. VSD can give precise control over speed, torque, and position, which can then be

matched to the process under control, yielding energy savings and removing the need for complicated

mechanical control devices.

It is typical that in addition to safety requirements – a characteristic of numerous automation systems –

VSDs must satisfy other quality related requirements. For instance, a crane manufacturer must also fulfill

performance (e.g. vertical speed), user comfort (e.g. smooth acceleration), customer expectations (e.g.

ability to serve 50 meters’ vertical height), and reliability (e.g. 2 hours’ maximum maintenance time per

year) requirements.

Motor

Electric Power

Modulation and
Protection

Diagnostic Functions

Sensor

Basic Motor
Control

Application
Control Program

Power
Section

Communications
and I/O

Ex
te

rn
al

 S
ig

n
al

s

Embedded
Control System

Control

current feedbackspeed feedback

Figure 1 - Functional elements of a VSD

A VSD (see Figure 1) follows a standard high-level design, which includes an Embedded Control System

that: communicates with external controllers via the External Signals; actuates the Motor via the Power

Section, to fulfil the application requirements and requests received via External Signals; and finally, uses

current and speed feedbacks from Sensors to the control system. The functional elements of the Embedded

Control System are divided into two groups: safety-related functions, and the VSD application itself.

Therefore, the embedded controller encompasses mixed criticality ranging from Safety Integrity Level 1 to

3 (SIL1-3). The safety-related functions consist of drive-based safety functions defined in IEC 61800-5-2,

and protection functions defined in IEC 61800-5-1, UL 508C, and UL 61800-5-1. The application control

could be split into two domains the Application Control Program (ACP), and Basic Motor Control (BMC).

The ACP typically models the application, e.g., conveyer belt, fan, pump, etc. Depending on the application

being controlled, the ACP has varying real-time requirements ranging from soft to hard real-time. The BMC

is responsible for handling the operation of the electric motor with hard real-time constraints.

VSDs are typically implemented on heterogeneous hardware consisting of dedicated processing elements,

like MCUs, DSPs and FPGAs. A commercial off-the-shelf System-on-Chip solution is a suitable VSD

hardware platform, as it provides the necessary processing performance with high-level integration

resulting in lower costs.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 7 of 40

Figure 2 – VSD prototype hardware

VSD prototype is built based on these concepts (see Figure 2). It uses Zync 7010 to run the control software

and the FPGA array on that SoC to implement real-time communication protocol between the control card

and power card. It also uses the FPGA to provide distributed real-time clock and basis for the functional

safety solution.

Interface Board

MicroZed board

BSP

Powerbus (FPGA)

Power card

Hoist

M

Powerbus (FPGA)

FPGA interface

Middleware

HAL/OSAL/Network

powerbus

Intel Wifi Chip

SPI (FPGA) UART

Application running on middleware

Middleware services

Wifi protocol
handler

Hoist application
S1015 Motor

Control

Iphone

PC

Iphone App

Console interface

Figure 3 - Deployment of the VSD demonstrator

Figure 3 shows the functional deployment of the VSD demonstrator. The demonstration application is hoist.

As a user interface we used iPhone App connected to the VSD with WiFi.

This demonstrator only has simple model based motor control. UTRC-Ireland extended the use of model

based design beyond motor control to fully take advantage of the automatic code generation possibilities

offered by Mathworks Simulink. For that purpose, it was necessary to primarily set a reference design that

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 8 of 40

includes all the control modules for these interfaces in Vivado (Xilinx development tool), so that the HW

created by Mathworks HDL coder can be automatically connected to the external components.

HDL coder will create VHDL or Verilog code for some of the model blocks in the system, while Embedded

Coder will create C code for Linux, for those algorithms intended to run within the ARM cores. At the same

time, it is possible to set a real-time SW model to interact with the control of the motor from the Simulink

model via Ethernet with the computer. An image of the whole system can be seen in Figure 4.

By manually adjusting the automatically generated code for Linux provided by Embedded Coder, it was

possible to automatically map the different algorithmic blocks created in Simulink to the two different

ARM cores in the Zynq-7000 platform. At the same time, it is possible to directly configure at model level

aspects like the way the different tasks exchange data, the periodicity of the tasks, or the core affinity,

among others. Real-Time Linux cannot guarantee isolation between critical and non-critical tasks. For that

reason, the demo was updated using the automatically generated code with a hypervisor to specifically

address the needs of mix-critical systems.

The selection of the hypervisor is a critical task for core temporal isolation. All the available hardware

resources need to be mapped and partitioned from a hypervisor point of view in order to safely control their

real time operation when accessing shared resources. Time partition with respect to evaluation of critical

time-based requirements of the motor control should be defined as well, as an additional control layer. The

concept is initiated through year 1 of EMC2 project where we verified simple scheduling algorithms based

on traffic-light semaphores running in one of the cores in a master-slave setting. In order to achieve this,

we aim in the future to introduce certified real-time operating systems, handling both time and resource

partition in an efficient way from engineering point of view.

Figure 4 – Test set-up for fully model driven control for the UC1 demonstrator

The selection of which algorithms are to be implemented in SW or HW depends on the application and its

requirements. The main idea behind this application is allowing independent execution of tasks with

different levels of criticality. For that, it is necessary to allow concurrent execution in both ARM cores

without conflicting, as well as deciding which algorithms are more suitable to be implemented in the FPGA

for pure parallelization and minimizing interfaces and possible data collision.

2.2 Description of the conceptual architecture

Figure 5 shows the control electronic concept of the demonstrator.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 9 of 40

Figure 5 - Control electronic concept of the UC1 demonstrator

The conceptual architecture of the first VSD prototype supports real-time performance characteristics using

a single multi-core chip (MCU and FPGA).

Target

specific

Chamberlain

HAL Network OSAL

Host infrastructure

Distribution Middleware

Common Middleware Services

Domain Specific Firmware

Applicationware

Product type

specific

Product

specific

Figure 6 - Layered software architecture of the VSD demonstrator

Software stack has been layered according to expected variation (Figure 6). Services on the lowest layer

vary with hardware. Hardware abstraction layer (HAL), Network layer and Operating system abstraction

layer (OSAL) hide this variation for the rest of the system. Chamberlain middleware layer provides uniform

way to handle distributed computation and different timing requirements and provide a set of commonly

used services. Domain Specific Firmware contains firmware part of control functions and Fieldbus

interfaces. This is expected to vary between different product types (AFE, INU). Application-ware contains

application package, customer software, and all other product specific functionality. It can vary according

to the product or customer.

The middleware layer abstracts the communication and co-ordination required by the distributed hardware.

The main reason for having a separate middleware layer is to abstract away from different hardware on

nodes, different hardware configurations, and different software deployments. This makes it possible to

develop applications and services so that they can be deployed across several different products. This

architecture also demonstrates declarative components and flexible deployment. Binding of functionality

takes place during the system installation or at runtime.

PWM
+

ADC

AOC

MOC

SPI

UART
LCP

Soc PWM

Analog

FPGA

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 10 of 40

The architecture is based on components with well-defined interfaces. Components communicate using a

blackboard. The schedulers provide event-driven and time-triggered execution environments.

 In the time triggered execution environment computations are periodic. There can be more than

one execution queue running at different frequency. Scheduling within the queue is co-operative.

Scheduling between queues in pre-emptive. Control flow is done through ordering of computations.

 In the event driven execution environment components are tasks. Computations are started by

events (inputs, timers). Since scheduling is pre-emptive it is necessary to protect shared resources.

The different nature of these execution environments means that components as a rule cannot be without

modifications moved between these environments.

Modulation subsystem is responsible of generating required waveforms on the outputs. The control

principles (Flux vector control, voltage vector control or active front-end) generate a voltage vector

reference, which is passed to the modulation subsystem. The ambition is to define a feedback handling

concept where the high-level functionality is common for both low power drives and high power inverter

units, and still allow for hardware variance in the low-level functionality.

The high-level ambition is to create a flexible solution that allows for a variety of modulation schemes such

as space vector modulation and any type of Discontinuous Pulse Width Modulation, Optimal Pulse Patterns

including Selective Harmonic Elimination (SHE), multi-level inverters, and interleaved DC/DC converters.

Paralleling is taken care by the modulation subsystem (Figure 7). The modulator calculates the switching

times Tuvw, which are broadcasted to all paralleled power modules. Each power module receives in addition

to this a specific power balancing message Tuvw,add,n from the paralleling control.

Synchronous

modulation

iuvw,1

PWMTuvw

t1 t2 t3 t4

Pulse generation

M

3~

DC ripple

compensation

PWM

t1 t2 t3 t4

Pulse generation

iuvw,8iαβ0,tot

mindex

θUs

Tsw/2

upol
*

fsw

3

3

Inverter bridge 1

Inverter bridge 8

Power

balancing

&

feedback

handling

Tfb,1

Tfb,8

Tuvw,add,1

Tuvw,add,8

up to 8 in

parallel ●
●
●

M
o

d
u

la
ti

o
n

 s
u

b
s

y
s

te
m

 i
n

te
rf

a
c

e

Tfb,avg

Figure 7 - Block diagram showing parallel control

Paralleling has strict real time requirements and modulation is mostly handled in the FPGA. Also the

internal communication bus has to be real-time with known delays and low jitter. This architecture achieves

this by handling also the communication in FPGA.

With the different execution domains in the middleware we have been able to keep real-time requirements

while at the same time supporting high hardware utilization rates.

Motor control uses this modulation subsystem interface and is independent of the paralleling. In the motor

control architecture, we have been striving for model based modular motor control. This means that control

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 11 of 40

mode selection, control cores and auxiliary functions are modularized and separated form reference chain

handling (see Figure 8).

Together with our partners in WP10 we have been building model based motor control. This has been very

successful. We can now deploy the control from the modeling tool into running prototype set-up in less

than 20 minutes. In parallel we have also built a set of motor models. Motor models are used in automating

regression testing. The number of different motor types is very large and it is not feasible to test control

systems against physical motors in large power sizes. Model based testing will significantly improve test

quality and coverage.

Flux SM state-machine
(control manager)

Converter Mode and Control Principle selector

Flying start

(output controller)

Position

Detection

(output controller)

Flux core

(output controller)

Firmware interface

Modulator

Vref

SF4

FBK

FBK

VVC+ SM state-machine
(control manager)

DC-

injection

(output controller)

VVC+ SM

core

(output controller)

UF state-

machine
(control

manager)

SME

FI1

Coast

(output controller)

SF2

OCE

B C D E F G

INIT1

Ref. chain
ramp, scaling, filter,

speed controller

REF1

INIT1

REF2

H

K

FI2

(output controller) (output controller)

ISF3
SF5

SF6

SET2

UF

(output controller)

A

AMA IM state-

machine
(control manager)

SF1

OCE

Figure 8 - Some motor control components

The latest prototype has a more complex motor control and also implements flux control. However, we do

not yet have encoder feedback built in and the prototype does not completely fulfill the requirements like

torque control (Requirement 05A-4_1_1) or speed feedback (requirement 05A-4_1_2).

UTRC studied a possibility to bring model based development further and use model driven design also for

FPGA. The processing architecture also in this case consists of 2 ARM cores and an FPGA fabric. One of

the ARM cores will be in charge of running the control of the operation mode of the motor, as well as the

speed control algorithm. The other core will run some Prognostic and Health Management (PHM) control

algorithms. On the FPGA side, data acquisition, encoder data transformation, current control and PWM

generation will be in included. Some of the PHM algorithms will need some data pre-processing. This PHM

extra processing tasks, such as a voting systems, will be included in the FPGA to take advantage of

parallelization. The block diagram of the system is shown in Figure 9.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 12 of 40

Figure 9 - Block diagram in fully model driven study

Models were developed in Simulink both for FPGA (Figure 10) and for the two ARM cores (Figure 11).

Figure 10 - Models for the FPGA-HW implementation

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 13 of 40

Figure 11 - Models for the SW implementation in the ARM cores

In order to specify concurrency within the tasks scheduled in SW, Simulink allows a task partition and

mapping to allow concurrency. Figure 12 shows the different tasks marked with colored blocks.

Figure 12 - Task partition and mapping

The general workflow followed for the design and prototyping is:

1. Build the models of the desired algorithms in Simulink using models of the motor and loads.

2. Generate a reference design for the FPGA system to include those HW parts that will not be

defined in Simulink, like for instance, interfaces.

3. Simulate the models choosing a configuration as close to reality as possible.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 14 of 40

4. Select weather they will be implemented in SW or HW. Take into account data types, algebraic

loops, fix point and mathematical operations.

5. Incorporate a hypervisor in order to resource partition the available HW resources. Hypervisor

should be previously validated and verified for conflict resolution between HW resources.

6. Simulate again taking step 5 into consideration.

7. Select, apart from the SW/HW partition, the desired partition and mapping of the SW tasks so

they can be executed in a concurrent way. Be careful with data transmission among tasks.

8. Use HDL Coder and Embedded Coder to generate both C and VHDL code.

9. Use Xilinx SDK to compile the C code for Linux and Xilinx Vivado to synthesize the VHDL

code and generate the bit stream configuration file.

10. Generate a model for the real time interaction with the motor.

This study demonstrated that it is possible to support fast prototyping of motor control systems in

heterogeneous multiprocessing environments.

In the first prototype we showed that the integration of Safe Torque Off is relatively straight forward (see

Figure 13) as it is possible to bypass the software layers to reach SIL3, PLe, Cat ¾ solution. In this prototype

we have developed concepts for supporting STO for paralleled power cards. We have also developed

concepts for other safety functions and communication over safe fieldbus.

Mixing safe and non-safe functions is problematic from several perspectives. Safety is supported by

redundancy and diagnostics. Redundancy increases costs and those costs are acceptable only when the

functionality is needed. This has led to a conceptual architecture which only supports STO as a standard

safe function. All other safe functions are optional.

Other safe functions include speed related functions like safe limited speed. This can be supported without

additional encoders if the power card has required functionality. In the new architecture this is provided by

a small optional element. Additional communication channel between the power cards and control of safe

functions is not needed if the communication channel can be monitored. This is possible using so called

“Black Channel” terminated in the power card option and in the functional safe option.

Figure 13 - STO functionality bypassing the software layers

We have also tried to define a common development process for safe and non-safe software. This does not

seem to be possible. Requirements are too different. Safe software has to be reviewed and changes strictly

controlled. Rest of the software is under competitive pressure to be changed even more frequently that

before.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 15 of 40

2.3 Multi-core communication using RPMsg protocol

In this part, the multiprocessor design enabling communication between individual processors was

integrated on ZedBoard device. It was not initially assumed to be the part of this task but the target Zynq

platform being used in it was found interesting to present functional demonstration of Remote Processor

Messaging (RPMsg) which was developed by NXP Semiconductors in Czech Republic in WP3, namely in

task T3.2, T3.3 and T3.7. With this, connection was strengthened between technological WP3 and this

Living Lab.

Two MicroBlaze processors within FPGA part of Zynq device work together. Both processors execute

program from their own local memory, which is situated in block RAM memory (BRAM) within the FPGA

part. All FPGA designs were synthesized in Xilinx Vivado 2016.3 The RPMsg Lite protocol was

implemented as a software for two MicroBlaze processors and compiled in Xilix SDK 2016.3. Both

processors also use the common memory which is also situated in block RAM memory within FPGA part.

The RPMsg Lite protocol is meant to be a solution for Mixed critical systems applications because of its

feature to split and instantiate the system into independent block or subsystems. The design uses wide

FPGA flexibility of XC7Z020-1CLG848C device to demonstrate mixed-criticality system solution. The

RPMsg can be the basis for embedded Remote Procedure Call (eRPC) which enables to execute code on

different places, in different cores or processors.

Achieved results on this implementation were collected in a conference paper for publishing in IEEE ICIT

2017 conference proceeding [ICIT_2017]. The paper is in review process.

2.4 PMSM model predictive control with field weakening implementation

One of the modern approaches to drive control is model predictive control (MPC). While the idea of MPC

itself is relatively old, only the recent development of controllers with higher computational powers enables

its implementation in systems with fast dynamics, such as electrical drives. An MPC controller includes a

model of the plant that is used to predict the behavior of the system, and the related optimal state-space

control problem is resolved with optimization methods. The great advantage of MPC is a proper constraints

handling, as well as the possibility of defining control objectives in a very natural way. The biggest

challenge in MPC implementation for AC electrical drive control is the nonlinear behavior of the drives. A

single linear multiple-input multiple-output predictive controller was developed here which replaces both

the current and speed controllers. The control algorithm is based on an explicit MPC, in which nonlinear

terms are handled in such a way that allows it to perform optimization of the magnetic flux, including flux

weakening in a high-speed region. The intrinsic implementation of field weakening is one of the main

advantages of the proposed algorithm.

The algorithm was implemented on a National Instruments CompactRIO (cRio) system, which combines a

field-programmable gate array (FPGA) and a real-time (RT) controller. The proposed design uses the

benefits of the RT and FPGA combination to face the large memory demands of a linear explicit MPC

implementation. The results of the successful experiments on a real PMSM (Permanent Magnet

Synchronous Motor) can be found in journal paper [IEEE_TIE_2016] which was published in IEEE

Transactions on Industrial Electronics. The work is in progress on implementation of this control algorithm

on a Zynq hardware.

2.5 Properties of the prototypes and relation to technical WPs

The goal of this prototype is to verify the conceptual architecture both for HW and SW. It shows that the

real-time communication works with the middleware. The correctness of the drive operation depends on

the timely execution of its functions (05A-1_0_4). The demonstrator shows that we have a solution on a

predictability supporting this requirement (related to WP3). Our solution is made so that we will be able to

use OSSS-MC technology developed by OFFIS in WP2 tasks T2.2 and T2.3. We have conducted a series

of measurements. Based on those measurements, jitter in the real-time control stays below 3.85µs under

maximal asynchronous load. The main sources of this jitter are data cache invalidation (~2.0µs) and

instruction cache invalidation (~0.24µs). Total jitter is way below the requirement of 10µs.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 16 of 40

The requirement 05A-1_2_0 specifies parallelism in software but also in hardware using FPGAs. The

demonstrator shows that functionality can be deployed for both cores and the FPGA. Development also

showed that FPGA software can be developed flexibly and iteratively. Tool support is based on WP2.

Successful core to core communication and FPGA based real-time communication bus between

computation units show that we have fulfilled this requirement. Jitter on this communication bus is 10ns

per switch assuming that there are no higher priority messages that will block the communication.

IEC 61800-5-2 specifies the designated safety functions (05A-1_1_1) that are relevant to variable speed

drives for the industrial domain. These safety functions and their constraints have to be taken into account

when architecting the drive. In this use case, the safety function Safe Torque Off (STO) is integrated as the

standard safety function. The STO (05A-4_3_1_0) ensures that power which could otherwise cause a

rotation of the motor is not applied. We are able to fulfill the safety requirements with the conceived

architecture and preliminary feedback from certification authority indicates that some mixed criticality is

accepted. We have not been able to fulfill our own goal of highly flexible or even programmable safety

solution.

The requirement 05A-1_1_3 specifies that temporal and spatial separation between software elements of

different criticality shall be achieved, allowing these elements to co-exist on the same device such that the

non-safety related functions can be modified without impacting the certified safety related functions. This

requirement is only partially satisfied in this prototype. With black channel communication we are able to

share the communication channels. We are working to expand the conceptual architecture for this mixed

criticality requirement (05A-1_1_4) using the modular safety framework developed in WP6.

The requirement 05A-1_0_3 specifies that the drive function binding can be performed at different times,

allowing a certain degree of adaptation to the system. This architecture demonstrates declarative

components and flexible deployment. Binding of functionality takes place during the system installation or

at runtime. We are in the process of evaluating different deployments. We have been able to demonstrated

that different software domains can used different binding strategies. We are also able to support flexible

production delaying binding to mini factories close to customer (late dedication sites). Explicit

representation of software configuration both from control and data flow perspective seems to open up a

lot of potential for optimization. However, more tool support needs to be developed to fully benefit from

this. Currently each configuration has to be fully tested before it can be used and this limits the usability of

this property.

All of these prototypes have model based motor control core (based on the techniques from WP5). VSD

prototype does not yet have torque control (Requirement 05A-4_1_1) and it does not have speed feedback

(requirement 05A-4_1_2). Primitive protection functions have been implemented but the use of feedback

as indicated by requirement 05A-4_1_3 is very limited. Brno University of Technology was able to

demonstrate that model predictive control can be successfully used to control frequency converters. We

also studied parallel motor control. However, in dual core processors it is more advantageous to use the

processor cores to perform independent tasks. This way both the strict timing requirements of synchronous

communication and the timing of motor control can be independently fulfilled.

Hypervisor verification for proof of concept core isolation has been completed in WP6 providing insights

for real-time operating system solution for the HW platform. Developed models have been analyzed within

framework developed in Task 5.3 where transversal services enabled by tool adaptors will allow model

results to be assessed and traced according to prototype requirements (09B-4_6_0, 09B-4_6_1, 09B-

4_6_2). Safety evaluation (WP6) will be primarily based on adopting OSLC solutions for seamless and

semantically proven communication between different model-based design tools which will strengthen the

certification credit towards the requirement 09B-4_6_3.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 17 of 40

3. T10.2 – UC_Identification and Authentication

NXP-GE is responsible for development of a flexible multi-core root of trust solution for embedded multi-

processor/core, mixed criticality applications in dynamic and changeable real-time environments. The task

of such a module is to act as a trust anchor that identifies & authenticates every communicating node in

order to establish a chain of trust in any given network. For this purpose, such root of trust module needs a

crypto coprocessor (also called a secure element) that can handle all cryptographic operations/protocols

related to identification and authentication. A secure element is a tamper resistant, certified (like Common

Criteria, EMVCo standardization institutes) microcontroller that provides secure/isolated processing

environment and secure storage features which finds application in banking cards, passports, transit,

insurance cards etc. A single secure element can perform one task and only one type of crypto operation at

a time as per the configuration. However, a multi-secure-element-core root of trust (MSECROT) module

can process multiple tasks in parallel and support multiple type of crypto protocols simultaneously. Thus,

in a network, a MSECROT has faster response time for diverse types security requests and better throughput

for higher load scenarios. This is the motivation for developing a MSECROT module.

A typical network with MSECROT can be envisaged as shown in Figure 14.

Figure 14 - Host-clients network with MSECROT

3.1 Functionality

It provides security as service to the connected network following the principles of service oriented

architecture(SoA). It implements a scale down version of public key infrastructure performing unilateral /

mutual authentication of client nodes to a host node or vice versa. Typically, in any network, clients

authenticate to a host using some challenge-response schemes (like TLS handshake mechanism) with

asymmetric key crypto protocols (like RSA/ECC) which is the same principle employed in MSECROT. It

can also negotiate session keys for encrypted message transactions between host and clients (using

symmetric key cryptoprotocols like AES). The list of all currently supported functionalities (also called as

security specifications) of MSECROT is given in Table 1.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 18 of 40

Crypto protocols Security APIs Description

True Random Number

Generation
RND_GetRandomNum()

Needed for challenge-response scheme.

A random number acts as a challenge

sent by a verifier which is signed by

private key of prover. The resulting

signature is verified by verifier using

prover’s public key

RSA asymmetric key

protocol

(Supports 1024/2048 key

sizes)

RSA_Sign() Used for signing a challenge

RSA_Verify()
For verifying a signature against

challenge

RSA_Encrypt() Message encryption

RSA_Decrypt() Message decryption

ECC (elliptical curve

cryptography) asymmetric

key protocol

(Supported Curves are

NIST192, NIST224,

NIST256, BrainPoolP192r1,

BrainPoolP224r1,

BrainPoolP256r1)

ECC_Sign() Used for signing a challenge

ECC_Verify()
For verifying a signature against

challenge

Elliptical curve Diffie

Hellmann

ECDH_GenerateEphemeralKeyPair()

Prior to session key creation between

client and host, an ephemeral

public/private key pair is generated by

both and respective public key is

exchanged insecurely on the network

ECDH_GenerateSharedSecret()

After public key exchange, a common

shared secret for symmetric key protocol

is generated

AES

(Supported modes are ECB,

GCM, CBC, GMAC with

key sizes 128,192 and 256.

Key wrapping supported)

AES_Encrypt() Message encryption

AES_Decrypt() Message decryption

General purpose secure

storage

SetParam() Save data (certificates, master keys)

GetParam() Retrieve data

EraseParam() Delete data

Table 1 - Security Specifications or APIs of MSECROT

3.2 Architecture

The multi-core root of trust module is composed of central ARM controller (NXP ARM Cortex M3

LPC1769) interfaced with multiple secure elements (NXP A7001 or A70CM) on board using I2C as shown

in Figure 15. The ARM controller is called multi-core secure element handler (MSEH) as it is responsible

for initialization & configuration of secure elements, scheduling, arbitration & load distribution of security

tasks assigned by host and provide multiple communication interfaces to host (like USB, Ethernet, SPI, or

UART).

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 19 of 40

Figure 15 - NXP Multi-secure-element core root of trust module

3.3 Assessment of MSECROT with respect to EMC2 requirements

The requirements for such a module as defined by EMC2 consortium is as described in Table 2.

Requirement ID Category Short description

01R_NXP_001
Networked

security

To adapt the security system to the UC identification and

authentication in a multicore environment it needs to be

connected to a non-linear decentralized bus system; the

interface will be defined with a layered approach to make

the hardware layer interchangeable

01R_NXP_002
Security counter

parts

each multi-core node needs to be equipped at least with a

secure element as trust anchor

01R_NXP_003
needed security

levels

the needed level of security of the whole system as well as

necessary differentiations in terms of required security

need to be defined

01R_NXP_004
Parallel

Processing

Scalability of the security system must not rely on an

increase of the performance of single processing elements

but on adding additional elements

01R_NXP_005

Runtime

certification of

cyber-physical

systems

provide methods for the runtime evaluation of trust

certificates and initiation of an asymmetrically encrypted

communication;

01R_NXP_006 Identification

Each part of the system, e.g. a service or communication

channel, should be identified by a unique name; for low

cost security needs symmetric encryption via device

pairing shall be considered as an optional aspect;

Table 2 - Requirements of a multi-core root of trust

The final demonstrator fulfills all the above-mentioned requirements as illustrated in the below sections.

All the supported functionalities are tested using a PC based graphic user interface application developed

using QT framework as shown in Figure 16.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 20 of 40

Figure 16 - PC GUI application to test security specifications of MSECROT

3.3.1 Key performance indicators of MSECROT

 The current version of MSECROT module can accommodate up to 14 secure elements interfaced

to MSEH on its 3 I2C busses. Since SE acts as slave to MSEH, it responds only when triggered by

MSEH. Thus, multiple SEs can be placed on the same I2C (however different I2C addresses)

without compromising on performance. Incoming security requests are distributed by MSEH to all

SE as per their configuration. MSEH polls each SE for response in a round-robin format.

 The performance comparison of single secure element against MSECROT is shown in Table 3. The

response time for each crypto operation measured during internal testing, gives a glimpse of

performance of MSECROT

Type of Crypto operation

Response time of

Single Secure

element (in ms)

Response time of

MSECROT with 4

SE (in ms)

Random Number of 32-byte length 23 11

RSA 1024 signature 157 55.5

Unilateral Authentication with RSA1024 [Get_Rnd() +

Hash() with SHA1 + RSASign() + RSAVerify()]
631 366

Table 3 - Response times comparison between single SE and MSECROT

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 21 of 40

An MSECROT with 14 secure elements cores doesn’t imply that it is either 14 times faster or can handle

14 times the load of single secure element. There are additional delays due to parsing of incoming request

& forwarding to appropriate secure element with right configuration, scheduling, bus transmission delay

(transmission times from host to MSEH and MSEH to SE and vice versa, transmission speed: I2C functions

as 100kbps, SPI at 400kbps although MSEH runs at 24MHz), processing time etc. Therefore, there is

performance is also affected proportionately.

 It can support multiple security protocols at once. Some of the SEs can be configured for RSA1024

and some for RSA2048 and others for different ECC curves. Hence client nodes can send different

types of request at once

 It has in-built redundancy feature. If one of the SE malfunctions, then the other SE with same

configuration can take over its load. This way it can ensure that quality of service is not

compromised

 It can support dynamic configuration/reconfigurations. It is possible to have an implementation on

MSEH that constantly evaluates the incoming security loads and based on the frequency of request

for each type of crypto-operation, it reconfigures underlying SEs to support most frequent crypto-

operation. That way, it ensures that higher throughput is retained during operations.

 It offers interoperability to external networks. The security APIs are abstract enough to encapsulate

SE specific commands in its internal SW layers. So, in future, if SE from different manufacturer is

used, the security APIs remains the same. Only the internal interface layer will be adapted to SE

specific handling.

3.3.2 MSECROT relationship to EMC2 objectives, KPIs & other WPs

It fulfills all strategic targets of ARTEMIS (i.e.)

 Reduce cost of system design & development cycle times

It uses only commercially available off the shelf (COTS) components which reduced the design

cost and time to market drastically. MSEH is COTS development board for LPC1769 and SE are

COTS A7001 modules. They have been simply plugged on to base board which reduces the

integration costs and number of design iterations

 Reduce time & effort for re-validation & re-verifications

Secure elements are EMVCo, Common criteria and other standardization committees certified.

Hence is no need to re-certify the complete solution again

 Manage the increase in system complexity

It is a multi - processor system with multiple OS (Java card operating system on SE and FreeRTOS

on MSEH), multiple layers of SWs (for both MSEH and SE) which closely coordinate to

accomplish the necessary functionalities. The SW is written in modular fashion with test-driven

development approach. This ensures plug & play functionality along with less time & effort in

V&V stage. Thus, complexity is managed in MSECROT

 Achieve cross sectorial reusability

The security APIs are very generic and can find application in many fields where security is

important. The next generation of MSECROT is planned to support wireless protocol such as BLE,

Wi-Fi, ZigBee and NFC. It is planned to this module as IoT Gateway in future projects. It can be

used in industrial automation sector too. Industry 4.0 is new trend where cyber-physical-systems

are turning autonomous and moving towards everything connected and everything secure.

MSECROT module can find application here too.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 22 of 40

It fulfills EMC2 objective OBJ63 (i.e. Security as a service) that states that “Hybrid solutions as

combinations multiple secure elements and managing processors to provide flexible roots of trust”.

Although the KPIs associated with OBJ63 (i.e. KPI48- KPI53) aren’t directly relevant to MSECROT, it

still accomplishes some of it in an indirect fashion. It has better latency (KPI49), efficiency (KPI52) and

bandwidth utilization (KPI53) in comparison to single secure core solution as shown in Table 3. The KPIs

of OBJ63 are however more relevant to industrial manufacturing and logistics which is the main use case

for the living lab work packages.

Technology

Respective

Work

package

name

Description of linkage in MSECROT

System and service

level security

(T1.5)

WP1

It can provide different kinds of authentication and identification services to

its network based on agreed service levels & desired Quality of service

Unilateral /bilateral authentication services are possible

Multiple configurable cryptographic routines for handshake (like ECC, RSA)

and encryption/decryption (AES in ECB, CBC, GMAC etc.) services possible

Communication

services (T3.2)

Networking (T4.3)

WP3

WP4

It supports multiple communication protocols for interfacing to the network.

It could be Ethernet, USB, SPI, I2C, UART etc. This gives the system

architect the flexibility to select any one of the above the communication

mode for interfacing to the rest of the system

Virtualization and

isolation (T3.3)
WP3

It is composed of multiple secure elements working either in parallel or

tandem based on configuration to provide security as a service to the network.

It can act as single virtual trust anchor of the system that distributes its security

load amongst the underlying cores based on priority or service levels or

configurations.

Each core can provide an isolated execution environment for a request and

thus service as many requests in parallel as the number of cores

Security

mechanisms and

services (T3.4)

WP3

the individual secure elements have inbuilt security mechanisms to counter

physical, side channel and other types of attacks. They have tamper resistant

memory units to safeguard the critical data of the system and provide a secure

execution environment. Through cryptographic handshake mechanisms they

can protect the communication channel between them and client requesting

their services.

Heterogeneous

Multiprocessor

SoC architectures

(T4.1)

WP4

Each core can provide a different set of security services compared to its

neighbor. Thus, forming a heterogeneous multi-processing architecture. As

mentioned before each core can be configured to run different types of

cryptographic routines and can also be reconfigured at run time dynamically

based on the load and desired quality of service

Verification and

Validation

Techniques (T4.4)

WP4

Individual secure element cores are common criteria certified (EAL6+),

approved by EMVCo, BSI and other international certification authorities.

The multi-core root of trust solution is composed of these certified secure

elements as individual cores and the central handler simply distributes the

incoming security traffic to these cores and play no role in security activities

such as handling public/private keys, performing crypto operations etc. Hence

the overall system can be considered as certified interconnect of security

cores. The validation & verification process of individual secure cores can be

extended to multicore root of trust solutions too

Table 4 - MSECROT features linkage to other WPs of EMC2

MSECROT employs concepts and technologies developed in other work packages of EMC2. Although

there is no direct technology transfer from other WPs to MSECROT, it based on similar principles. A table

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 23 of 40

(See Table 4) describing the cross linkage of MSECROT features to the other WP technologies illustrates

the connection in detail.

3.3.3 Final Demo of MSECROT

A final demo is planned together with WP10.3 which deals with heterogeneous tracking module (Multiple

location / position sensors are connected to a central Linux gateway module) from Ambar

Telecomunicaciones. The use case to be demonstrated in the final demo is unilateral authentication of

tracking sensor nodes to central Linux gateway. The gateway or the host forwards all security requests from

tracking nodes to MSECROT and sends its response back to sensor nodes. The host is connected to

MSECROT via SPI. A block diagram of the complete system is shown in Figure 17.

Figure 17 - Block diagram of MSECROT with AMBAR Tracking module

The unilateral authentication of sensor nodes with host is done using RSA 1024 crypto protocol. A

representation of authentication process is shown in Figure 18.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 24 of 40

Figure 18 - Unilateral authentication process

Since sensor nodes are remotely located and battery powered (most of the times), it often lacks computation

power and resources to do complex PKI authentication processes. Hence a simplified authentication

protocol without a central certificate authority is implemented in the demo.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 25 of 40

4. T10.3 – UC_Tracking

The purpose of this use case is providing a platform which integrates different tracking and communication

technologies. Finally, this platform consists of the following elements:

 Central server / gateway.

 WIFI nodes.

 Tracking Device (mobile phone as example).

 ZigBee identification modules.

4.1 Gateway improvements

As result of the test performed with the first gateway version a new board has been designed to fix the

detected issues and improve the features and performance. The key improvements are:

1. More powerful microprocessor.

2. Reduced size.

3. Wi-Fi/BLE embedded

4. Added GSM/GPRS modem.

The following table summarizes the differences between the first version of the gateway and the current

version:

GATEWAY

Vybrid Based

(1º versión)

GATEWAY

SoloX Based

(2º versión: Mayo 2016)

Dimensions

115x85mm

(without enclosure)

90x60mm

(without enclosure)

Microprocessor

Multicore: Cortex-A5 (533 MHz) +

Cortex-M4 (167 MHz)

Multicore: Cortex-A9 (1GHz) +

Cortex-M4 (200 MHz)

OS Linux (Debian) Linux (Ubuntu)

Interfaces

Micro USB (console) Micro USB (console)

Ethernet Ethernet

Wi-Fi Wi-Fi (integrated)

Bluetooth 4.0 Bluetooth 4.0 (integrated)

ZigBee ZigBee

6LoWPAN 6LoWPAN

 GSM/GPRS

USB host USB host

SPI SPI

I2C I2C

GPIO (x2) GPIO (x2)

Power interface 5V/2A 12V/2A

Table 5 – Gateway improvements

As in the first version this gateway runs a Linux distribution that gets the flexibility for performing

communication tasks and for executing other activities. Figure 19 shows the new version of the prototype

mounted over an UDOO board.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 26 of 40

Figure 19 - Gateway v1 (left), Gateway v2 (right)

4.2 Architecture and description of the prototype

The Wi-Fi ESP8266 nodes have been added to the setup to implement the tracking demo test as anchor

nodes with known positions. The geographical position is configured as the Wi-Fi SSID embedded in a

hexadecimal code in every anchor node. A smartphone is used as tracking device with a customized

Android app that retrieves all the Wi-Fi nodes in range and shows each ESP8266 node information in the

screen. At the same time all the information is forwarded to the gateway using UDP datagrams.

Figure 20 – ZigBee module (left), Wi-Fi Node ESP8266 (right)

The android app uses three main libraries to get an estimated GPS position:

 Subpos (www.subpos.org).

 Trilateration-master.

 Commons-math3.

These libraries are used to perform position triangulation based on the received signal strength from each

anchor Wi-Fi ESP8266.

Regarding the Gateway/Server software, a custom application has been designed and implemented using

the JavaScript language both in server and client side following a Model/View/Controller (MVC) design

pattern. The server hosts a full JavaScript stack based on the MEAN.JS1 framework: MongoDB, Express,

AngularJS and Node.js. MongoDB provides a non-SQL database implementation, Express multiple

features to support the web application implementation, AngularJS a MVC client-side MVC framework

and Node.js represents an optimum and lightweight JavaScript server-side platform.

1 https://meanjs.org/

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 27 of 40

The main features of the Gateway/Server application are:

 serve the requested data that are stored in the database,

 provide html responses including the AngularJS directives embedded to the client,

 receive UDP datagrams, that are sent from the tracking devices with location information, and

stored this data in the local MongoDB database.

An overview of the full system architecture is shown in Figure 21.

Gateway / Server

Mobile phone

Computer

Wifi

UserLAN / Internet

Node
ESP8266

GPRS

Android

UDP
Sockets

App

http
wwwExpress/ Node

WEB SERVER

MongoDB

WEB BROWSER

ANGULAR
JAVASCRIPT

Node
ESP8266

Node
ESP8266

Linux

S.O.

WIFI Broadcast
receiver

Tracking
Device

ZigBee

MSEH (NXP)

Figure 21 – Tracking full system architecture

Three main layers were detailed in D10.4 that can be identified in the architecture overview Figure 21:

 The smartphone application that provides the GIS calculation is embedded in an Android app.

 The client side or web GUI that depicts all data and GIS positions of the tracking devices. It is

written using AngularJS and asynchronous calls. This reduces the server traffic and improves the

system responsiveness transferring only the minimal amount of data at a time instead of refreshing

whole page.

 The service layer, in charge of all communications, serve the information to the client web GUI,

retrieving UDP location packets from the smartphone app and storing the data to the MongoDB

database. When server receives UDP datagrams from a tracking device, that contains distances and

positions, the information is stored in the database that later can be forwarded to the web clients.

Figure 22 depicts the Android app that can be installed in the tracking devices. In this example the signal of

three nodes is received. The received power and the estimated distance to the node are showed in the screen

for each node. After the signal strength triangulation process the estimated distance to the reference point

is showed in the screen.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 28 of 40

Figure 22- Android app screenshot in tracking device

The web GUI goal is to show the requested information in tables and graphs. Currently the application

offers a graph where is represented the building, the tracking device, nodes, and distances between them.

An example is depicted in Figure 23 below.

Figure 23 – GUI: distances graph on client's browser

Other information related to the received power, type of RF communication, RF environment model

parameter, estimated distances to each node and other parameters are represented for each node. Table 6

shows an example of information table that it was used in this demo.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 29 of 40

Table 6 – GUI: nodes information table on the client side.

The service layer includes a custom Node.JS application that uses Express to provide the web GUI features

and UPD connections to retrieve location data from the Wi-Fi nodes. This data is stored in the “collections”

that have been defined in the MongoDB or “tables”. These tables stores all data that is needed for the

tracking application related to identifiers, frequencies, estimated reception power…. The current and

previous positions are stored, therefore an historical set of movements is provided that enables the system

to implement further location-aware services and tracking application. An example of the connection to the

MongoDB database showing part of the nodes “collection” and the web requests that the Node.JS/Express

server receivers are shown in Figure 24.

Figure 24 - Mongo database collections (left), Module-controller communications log (right).

The main challenge of this tracking system is the estimation of the position from the RF signal propagation

characteristics and power reception (Rx) in the tracking devices. The setup had to deal with known issues

related to the variance of the Rx power, if the receiver is too close to a node the received power is too high

and it changes drastically a few cm farther from the node, while the received power for a distant node is

almost constant. The propagation formula employed and the environment corrector coefficient are the most

sensitive point in the design and play a fundamental role in the indoor position calculation. Currently the

corrector coefficient is coded in the SSID of the node and because of current firmware of the node it can’t

be changed remotely.

Other important challenge to setup and implement the full system is the setup of the MongoDB in ARM

32-bit architecture. Last versions of MongoDB do not offer support for 32-bit architectures. An older

version of MongoDB (v2.1.1) had to be full compiled and manually installed in the system. Since this

version was released, MongoDB project has faced a lot of changes and improvements, even in the

instructions and procedures that are needed to store a retrieve data from database. As a future improvement

for the gateway/server the upgrade to ARM 64-bit architecture will be evaluated to easily integrated

MongoDB and other IoT libraries only provided for 64-bit architectures.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 30 of 40

4.3 Relationship with other WPs

4.3.1 Contribution from technical WPs

This use case has contributions from the following technical WPs:

 WP1: establishes the base requirements and specifications of tracking devices.

 WP3: introduces the integration of different radio communication technologies into a single system.

In case of indoor tracking of goods, typical radio beacons like Bluetooth LE or Wi-Fi and RFID

technologies are likely to be used. Additionally, communication between the gateway and the

central server requires an internet connection by means of GPRS/3G/4G or a wired network.

 WP5: provides support with tools and technologies to ensure the interoperability of different

platforms and testing and validation.

4.3.2 Integration of solutions from other partners

ZigBee nodes and the NXP MSEH prototype described earlier have been integrated in the Tracking system

to evaluated the used of NXP platform for the ZigBee node authentication. ZigBee nodes sends an

authentication challenge to the gateway which connects through the SPI bus to the NXP MSEH prototype

that provides the authenticate hardware engine (Figure 25).

The integration was divided in three steps:

 Phase 1: Software based implementation

At a first step an adaptation of an embedded crypto library, that include support for standard PEM

certificates, was integrated into the ZigBee nodes. File transfer mechanisms between the node and

the Gateway were implemented with high-level functions, in both node and gateway, to provide

client-side authentication using RSA-1024 bits based on the OpenSSL library.

 Phase 2: Hardware based implementation using an old NXP prototype

In this second phase of the integration, the software OpenSSL features are replaced by the NXP

MSEH platform connected to the SPI port of the gateway.

 Phase 3: Hardware based implementation using new NXP prototype

In this third phase, the old NXP prototype is replaced by a newer version that supports several

MSEH. The following picture shows AMBAR gateway connected to NXP MSEH prototype and

two nodes with authentication support.

Figure 25 - NXP MSEH integration in the system

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 31 of 40

4.3.3 Evaluation of prototype against requirements

The following table summarizes how the requirements established in D10.1 are fulfilled by the

implementation provided for the use case.

Requirement ID Description Prototype implementation

15R_AMBAR_014

The prototype must support

heterogeneous communication

technologies in a single

platform.

This demo makes use of different

communications gateway possibilities.

Wi-F is used to get an estimated position

of the Tracking device, at the same time

GPRS can be used for tracking the

gateway global position. Currently wired

connections are used to client’s browser.

An SPI bus is used in the MSEH NXP

solution and ZigBee nodes are identified

by the system.

15R_AMBAR_015

The platform must support

heterogeneous indoor/outdoor

location

Indoor and outdoor location is supported

as long as radio signal is received by

tracking devices. Several tens of meters

are recommended for the Wi-Fi location.

GPRS gives the freedom to locate the

server almost everywhere and the gateway

can make use of a GIS server. ZigBee can

be used in both environments an event

Bluetooth low energy or NFC can be used

to identify items.

15R_AMBAR_016

Location information must be

centrally structured and

prepared to be analysed in real-

time with third-party algorithms.

Results should be presented by

using an appropriate user

interface and prepared to be

consumed by different devices

(computer, cellular, etc.)

The utilization of web pages as GUI

makes it possible for the end user to

access the information from different kind

of devices, such as computers, tablets or

mobile phones, without requiring

development of custom applications for

every targeted device.

All information is stored in the database of

the gateway. Tracking devices and their

locations are available in the tracking

device and in the gateway/server. The

information in sent to the gateway as soon

as it’s obtained by the tracking device and

once is stored by the server can be

analysed by third-party algorithms.

The user interface is completely

customizable to the end user necessities. It

can be as simple as a graph for location

representations or can be represented over

a GIS map.

Table 7 - Requirements of the use case

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 32 of 40

5. T10.4 – UC Manufacturing Quality Control by 3D Inspection

This section provides a description of the completed final demonstration prototype for Task 10.4

“Manufacturing Quality Control by 3D Inspection”. A conceptual architecture and a block diagram of the

final prototype design are presented and explained in detail. Then, a modelling example of the WP2

“art2kitekt” tool suite is presented performing a bus analysis of the final prototype. Moreover, an

experiment is devised to be run and reported in the final deliverable aiming at measuring the performance

of the prototype. Finally, a brief description of the main achieved requirements of this use case is described.

5.1 Description of the final prototype

The inspection system reconstructs the 3D shape of a captured object as well as its corresponding texture.

The aim of this UC is to take advantage of multicore platforms and the tools provided within the EMC2

project (“art2kitekt”) to obtain a highly parallel and scalable version of the inspection system.

5.1.1 Conceptual architecture

The final prototype inspection system in the “Manufacturing Quality Control by 3D Inspection” use case

follows a distributed architecture, organized into four different entities (see Figure 26):

 Capture provider

 Backend

 Broker

 Frontend

Each entity provides services that can be reached by requests or subscriptions. Communications among

services are implemented with ZeroMQ sockets.

Figure 26 - Conceptual architecture

The capture provider transmits images from hardware to feed the backend. The implementation of this

executable is known as zg3d-capturer and only one instance is required. The broker assumes the role of

system manager. It is responsible for receiving and understanding each entity request, resending it to the

corresponding service and finally responding. Its implementation requires two executable, known as zg3d-

proxy and zg3d-master. Only one instance is required for the master, but three proxies are needed. The

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 33 of 40

backend is the computing centre of the system. It is responsible for the hard computing processes: 3D

reconstruction, model training, defect detection and object classification. All the operations that need

computing power and high memory consumption are sent to the backend. Its implementation is known as

zg3d-worker and N instances can be required, one for each of the computing nodes. Finally, the frontend

is the entry point for any user of the system and implements a common language based on JSON requests.

The human operator interactions with the system are done by a graphical user interface known as zg3d-

frontend.

5.1.2 Communication block diagram

The communication scheme among different entities is shown in Figure 27. Sockets provided by ZeroMQ

can work in different modes:

 REQ/REP (Request/Reply): For each request message, a reply is expected.

 PUSH/PULL (Producer/Consumer): A message is distributed by a round-robin policy among the

consumers.

 PUB/SUB (Publish/Subscribe): Each time an entity publishes a message; one or more subscribed

entities receive it.

Figure 27 - Block diagram

Every request has a standard JSON format, including 5 basic fields:

 “sender”: Request emitter.

 “recipient”: Request receiver.

 “command”: Request type.

 “encapsulated”: Flag for encapsulated data request.

 “encoded”: Flag for base64 codified data request.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 34 of 40

Next, a list of the different type of requests that can be sent and received through the system is provided

along with a JSON example:

 Get status - { "sender": "operator", recipient: "master", "command": "get_status",

"encapsulated": true, "encoded": false, "statustype": "start" }

 Send status - { "sender": "master", recipient: "operator", "command": "send_status",

"encapsulated": true, "encoded": false, "status": "started" }

 Init workers request - { "sender": "operator", recipient: "master", "command":

"send_init_workers", "encapsulated": true, "encoded": false, "taskname": "tooth"}

 Start request - { "sender": "operator", recipient: "master", "command": "send_start",

"encapsulated": true, "encoded": false, "taskname": "tooth"}

 Stop request - { "sender": "operator", recipient: "master", "command": "send_stop",

"encapsulated": true, "encoded": false}

 Get n images request - { "sender": "operator", recipient: "master", "command": "get_n_images",

"encapsulated": true, "encoded": true, "imagetype": "background", "taskname": "tooth",

"num_images": 16, "size": -1 } { "sender": "operator", recipient: "master", "command":

"get_n_images", "encapsulated": true, "encoded": true, "imagetype": "target", "taskname":

"tooth", "timestamp": "2016-11-21T12:32:03.103279Z", "num_images": 16, "size": 200 }

 Send n images request - { "sender": "master", recipient: “operator”, "command":

"send_n_images", "encapsulated": true, "encoded": true, "imagetype": "target", "taskname":

"tooth", "timestamp": "2016-11-21T12:32:03.103279Z", "images": ["iVBORw0KGgoAA [...]",

"GuXydUlohIId95RD [...]", [...]] }

 Published results - { "sender": "W0", "recipient": "operator", "command": "send_string",

"encapsulated": true, "encoded": false, "string": "{ \"id\": \"2016-11-21T12:32:03.103279Z\",

\"object\": { \"num_points\": 5446, \"num_triangles\": 10874, \"bbox\": [-6.175856, 6.393371, -

3.407393, 3.150465, -2.840201, 3.240691], \"area\": 209.801270, \"volume\": 225.106750 },

\"class\": \"Unknown\", \"vol_defect_error\": false, \"sur_defect_error\": true }" }

For the basic operation mode of the system previously described, the user just selects a specific task and

starts the inspection process. This simple action automatically triggers the 3D capture sub-process and each

time an object passes through the inspection system the 16 images are captured and delivered to a worker

node to perform the 3D reconstruction and all the steps required to finally provide an inspection result that

is published and shown by the graphical interface.

5.1.3 Model and analysis with “art2kitekt”

A tool suite for modelling and analysing real time systems, coming from WP2 and named “art2kitekt”, has

been used to represent and analyse the final configuration of the prototype tasks responsible for the capture

delivery and its corresponding 3D object reconstruction processes.

The bandwidth of the bus, 10Gbps, is defined at the “Platform Model” stage, as it can be seen in Figure

28.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 35 of 40

Figure 28 – “art2kitekt“ - Modeling of the execution platform

Then, the size of the image is defined in the “Application Model” stage. Each capture is composed of 16

images of approximately 40Mb per image. Thus, the total size is 640Mbits per capture, equivalent to

80MBytes. A new task set has been modelled including a special flow for the data delivery (“capturer-

master”), with two tasks (“Capture-delivery-w1” and “Capture-delivery-w2”) that include the “Sent

Messages” information. These messages are used to model the image transmission through the network,

and two additional flows (one for each “worker” node) are used to model the processing tasks carried out

by each “zg3d-worker” instance to perform the 3D reconstruction computations.

Figure 29 - "art2kitekt" - Application model of the final prototype

At Figure 29 a capture of the “Application Model” stage with a summary of the flows modelled with the

“art2kitekt” tool suite and its corresponding tasks (tree structure at the left panel) is shown.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 36 of 40

Figure 30 - "art2kitekt" - Data delivery model with messages

In Figure 30 the detailed information of a task used to model data delivery is presented.

Finally, the “Bus Bandwidth” analysis results can be obtained from the “System Analysis” stage, providing

an estimate of the maximum number of captures that can be sent through the network, and thus the

maximum number of 3D objects that can be reconstructed.

Figure 31 - “art2kitekt” - Bus bandwidth analysis results

A snapshot of the “System Analysis” stage with the bus bandwidth results (utilization and density factors)

it is shown at Figure 31. As it can be seen from the previous figures, the “art2kitekt” software provides

helpful information to predict the occupation of the communication channels reached by a given task set

and the available hardware resources.

5.2 Experiments with the final prototype

A battery of experiments will be run in order to confirm how throughput linearly increases with a growing

number of available computing nodes as it is expected. At continuation, a table with a summary of the

devised experiments is shown.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 37 of 40

Computing nodes (or Workers) will have 4 cores. The available hardware has the following characteristics

and provides 32 cores:

 Processors: 2

 Cores (at each processor): 8

 Multithreading capabilities: YES

Number of workers Throughput

1 6 objects/minute

2 11 objects/minute

4 22 objects/minute

8 45 objects/minute

Table 8 – Increase of inspection throughput with number of “workers”.

As our preliminary experiments show, for one “worker” a throughput of almost 6 objects per minute has

been achieved. The system took around 293 seconds to perform 28 3D reconstructions. The other figures

only represent an estimation of the results we theoretically expect. We are still working on the whole

process optimization and will provide the latest results during the public demonstration in Granada.

To simulate a situation where workers do not have necessarily the same number of cores and neither the

same computing power, an experiment with 4 workers is devised. The first worker will have one core, the

second 2 cores, the third 4 cores and the last 8 cores. The overall throughput should be a little bit lower than

the one obtained in the previous experiment with 4 homogeneous workers.

Number of cores per
worker

Throughput

1 < 6 objects/minute

2 < 6 objects/minute

4 6 objects/minute

8 > 6 objects/minute

Table 9 – Worker-by-worker throughput with number of cores available.

As explained before, this preliminary experiment shows the throughput of “one-worker-one-core”. The row

with 4 cores per worker is the same than the first row in the previous experiment in Table 5. A complete

final report of this experiment results will be provided for the final public demonstration.

For the new set of experiments, the reconstruction process will include the steps described in D10.4:

1. Load cameras number and calibration.

2. Reading images from disk.

3. Remove lens-object distortion from images.

4. Segment silhouette.

5. Octree computing.

6. Surface marching cubes computing.

7. Centroid and alignment.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 38 of 40

In the next deliverable a detailed summary will be presented with the quantitative results of the previously

described experiment.

5.3 Fulfilment of Requirements

The main goal of this industrial use case is focused on achieving a performance increase by taking

advantage of multicore execution platforms and parallelization capabilities of the task set. Next, the original

requirements targeted within this use case are listed:

 15Q-WP10-REQ005 “Algorithm parallelization” main algorithms shall be parallelized to reduce

process latency in a multi-core execution platform.

 15Q-WP10-REQ006 “System scalability” new dispatching stage shall allow the system to balance

workload among different processing nodes to reach the required throughput.
 15Q-WP10-REQ007 describes proper and precise synchronization between the capture process

and the data delivery process to reach a maximum performance.

In previous deliverables, requirement 15Q-WP10-REQ005 was targeted. A first prototype was developed

and improved as a proof of concept of how it is possible to enable algorithm parallelism for the 3D

reconstruction software. OpenMP was applied to some functions of the software and an evaluation of the

performance for intensive computation tasks on a variety of execution platforms was presented and

compared. All this work allowed for a coarse exploit of intra-node parallelism and therefore it was useful

to reduce system latency.

Now, also requirement 15Q-WP10-REQ006 has been addressed and preliminary but good results are being

achieved with a new software architecture that allows the exploitation of inter-node parallelism by

delivering full captures to different “worker” nodes and continuing with the next object inspection while a

set of already captured and delivered objects are being processed into other “workers”. In this way,

throughput of the inspection system raises. Moreover, this system scalability improvement has also

benefited from a technological development outcome from WP02 with the use of an offline analysis tool

suite known as “art2kitekt” which has allowed to model and analyse the evolving system prototypes in

different ways, from “Best Computation Time” analysis in a hard parallel task set to “Bus Bandwidth”

analysis for the last system architecture.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 39 of 40

6. Conclusions

Work in the different use cases in work package 10 has proceeded well. Updated prototypes developed in

the second phase of the project address the requirements described in D10.1. In the final review we will

demonstrate how well the requirements were fulfilled.

In a short summary, results in model driven design and implementation are very satisfactory. We have

reached the goals in terms of development speed and quality. New architectures also seem to perform as

expected in fulfilling both the real-time requirements and the capacity requirements. Development in

security area is solid and will improve the security of industrial systems significantly. Communication and

tracking solutions for mixed radio and protocol environment have progressed according to the set

requirements.

Safety is the only area were our original ambitions will not be satisfied. We were looking for a flexible

safety solution were additional hardware investments would have been minimal and flexibility would have

allowed us and even our customers to combine different certified safe components into new designs without

the need for recertification. We have made some progress. Use of non-safe communication channels are

accepted as long as they are monitored and use of pre-certified components will speed the certification

process. However, we will still far away of providing “programmable safety solutions”.

Based on the prototypes WP10 is on track in achieving the commercial goals set for the project. In some

cases, the decision to develop new products based on the results has already been made.

ARTEMIS Call 2013, project 621429 EMC²

D10.5 Final design and implementation Page 40 of 40

7. References

[REQ_01R_NXP_001]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[REQ_01R_NXP_002]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[REQ_01R_NXP_003]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[REQ_01R_NXP_004]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[REQ_01R_NXP_005]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[REQ_01R_NXP_006]: Refer to EMC2_HL_REQ_NXP_WP10_task_10_2.xls in EMDesk Server

[FPP_EMC2_AIPP5]: FFP document of Artemis AIPP5 EMC2 project

[ICIT_2017] Aboelhassan, M. O. E., Bartik, O. and Novak, M.: Embedded Multi-core systems for mixed-

criticalapplications with RPMsg protocol based on Xilinx ZYNQ-7000. In proceedings of ICIT 2017, sent

for publication, in review process.

[IEEE_TIE_2016] Minar, Z., Vesely, L. and Vaclavek, P.: PMSM Model Predictive Control With Field-

Weakening Implementation. IEEE Transactions on Industrial Electronics, vol. 63, no. 8, august 2016

