
Sparse cogitations on (some)
MCS challenges

Tullio Vardanega
tullio.vardanega@math.unipd.it

HiPEAC 2016
EMC2 workshop
20 January 2016

Disclaimers /1

 This talk addresses the MC2 (mixed-criticality on
multicore) systems problem space

 This slant is consistent with the grander challenge
of the hosting EMC2 project (supposedly)

 And it matches the dominant direction of the MCS
research by the real-time systems community

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 2 of 35

Disclaimers /2

 This presentation uses material from
 Jim Anderson’s (UNC) keynote talk at WATERS 2015
 The PROXIMA project tutorial at ESWEEK 2015
 A technical report by Vincent Nelis (CISTER)
 A couple of earlier presentations of mine

 But this is not stale and old material because it
addresses a

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 3 of 35

Understanding the MCS question

 The advent of multicore processors creates a wave
of opportunities and challenges in many application
domains

 Opportunity
 Transition from federated systems (with unwelcome

harness, unused spare, workmanship hazard) to
integrated systems with some degree of isolation

 Challenge
 The integration solutions adopted for single processors

do not scale well

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 4 of 35

Understanding the ex-ante /1

 The integration solutions for single processors fall
under the umbrella term of TSP (time and space
partitioning)
 Memory space is segregated by design and supervised at

partition switches
 Caches are flushed on partition switch so that there is no inter-

partition interference

 Time is allocated in slices to partitions and partitions do what
they please with their slices
 Slice overruns are prevented by margin provisioning (insufficient

science but sufficient confidence or extreme scientific pessimism)

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 5 of 35

Understanding the ex-ante /2

 The TSP model is typified by the IMA (integrated
modular avionics) and its ARINC 653 interpretation

Courtesy of

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 6 of 35

Understanding the ex-ante /3

 The TSP model silently builds on the single-runner
assumption
 The intrinsic reality of single-CPU computing

 Execution is strictly sequential
 Concurrency is obtained by transparent interleaving

 The level of underutilization caused by overprovisioned
static allocation is naturally upper bounded by the
limited CPU capacity available

 The waste is more than offset by securing the grail
of incremental development and qualification (IDQ)

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 7 of 35

Understanding IDQ /1

 In general, one pursues IDQ by separating
application contents (considered in isolation) from
their individual system container
 The former is a distinct part of the application (aka

component), independently developed or supplied
 The latter is the cocoon that the system architecture

wraps around individual components to assure
conformance to the required model of computation and
the sought guarantees of sufficient independence

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 8 of 35

Understanding IDQ /2

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 9 of 35

Component
A

Container A

Component
A

Container A

Component
B

Container B

Connector AB

Component
A

Component
B

Component
B

Container B

Courtesy of

What implementation
artefact is a good

container?

Understanding IDQ /3

 Industry wishes IDQ to be preserved on transition
to multicore processors

 Perhaps, even at the cost of hitting
the notorious “one out of m” problem

 The MCS RT literature makes a number of strong
assumptions here that we should look into carefully

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 10 of 35

When using an m-core platform in a safety-critical domain, analysis
pessimism can be so great that the capacity of the “additional” m 
1 cores is entirely negated

Jim Anderson @ WATERS 2015

Understanding the ex-ante /4

 Why is multicore timing analysis prone to gigantic
pessimism?

 Because the single-runner assumption just breaks on
transition to multicore processors

 Conventional HW architectures have numerous sources
of interference among parallel co-runners
 Difficult to avoid, short of imposing a single runner per time

slice for the whole system
 Which – hopefully – is unspeakable

 Difficult to bound, short of massive overprovisioning that
defeats the purpose
 Which is bad

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 11 of 35

Understanding the ex-ante /5

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 12 of 35

Instruction
cache

Data
cache

Courtesy of

Sources of time interference

Lots of shared HW, before even looking at SW!

Composability & compositionality /1

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 13 of 35

IICSTSCCS
T

JRCCSBR R
extInt

R
clock

ihpj

j
j

A
j

n
i

ii
n
i

n
i

n
i 







 
 





)(

1)21(1

Blocking time
(resource access
protocol or kernel)

“In” context
switch

“Out” context
switch Interference

from the clock

Interference
from interrupts“Activation”

jitter

“Wake-up” jitter

Time to issue
a suspension callܴ௜଴ ൌ ௜ܤ ൅ 1ܵܥ ൅ ௜ܥ

ܴ௜ ൌ ܴ௜௡ ൅ ௐܬ

ܴ௜ is a compositional expression Its RHS equation benefits from composable terms

Composability & compositionality /2

 The single-runner model of computation of
traditional processor HW allows systems to enjoy
some extent of time composability (TC)
 Intrinsic at the HW level
 Aided by design and implementation choices at SW level

 Multicore processor architectures shatter
those premises and TC can longer be attained

 The question then becomes whether TC has more
shades of grey than just all-or-nothing

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 14 of 35

Ramifications /1

 With IDQ, distinct application parts may be developed
at different levels of integrity
 The essential obligations attached to them are sanctioned by

the customer in contractual arrangements
 Calling a given API, limiting the footprint, living within a bounded

execution time budget, meeting all application requirements, …
 Responded by the supplier with the provision of factual

evidence and assurance of given guarantees
 As those guarantees may be insufficient, safeguarding

measures must be adopted against violations
 By architectural choices and run-time means

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 15 of 35

Intentionally avoiding use
of the term “criticality”

Ramifications /2

 The ‘C’ in MCS makes rather lax use of the
term “criticality” to mean something else really

 The central concern of the mixed-criticality analysis model
is the WCET of SW programs

 But “criticality” does not correspond (directly) to it!
 In the same vein, some authors relate “criticality level”

to SIL (safety integrity level)
 But this is equally doubtful as the SIL concept is related

to importance and confidence
 This abuse has given rise to quite some confusion and a

number of ill-founded speculations

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 16 of 35

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 17 of 35

Insert: understanding SIL

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 18 of 35

As in
development process

P. Graydon and I. Bate
Safety assurance driven problem formulation for
mixed-criticality scheduling
Workshop on Mixed-Criticality Systems @ RTSS 2013
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/
paper14.pdf

The link from this to WCET is far removed

Ramifications /3

 Time is the principal area of concern for misbehaviour
in real-time systems, so that’s what we talk about here

 Two contrasting high-level goals around time
 High schedulable utilization (aka, maximum guaranteed

performance)
 Sufficient guarantees that the important services are always

delivered in time (no hard deadline miss)
 Two alternative solution architectures

 Asymmetric guarantees: one-level scheduling with some
run-time monitoring

 Symmetric guarantees: multi-level scheduling or hierarchical
execution with run-time enforcement

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 19 of 35

Memento

 Assuming we know how to compute the WCET of
SW programs running on a multicore
 (Which we don’t really …)

 We can first consider the system architecture
challenge

 And then return to the WCET analysis problem

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 20 of 35

Asymmetric guarantees

 Overarching goal: low-importance low-guarantee parts cannot cause higher-
importance parts to miss their deadline
 If a task executes longer than budgeted at the current “criticality” L, L is raised

to L+1 (higher)
 The only tasks that can continue executing at L+1 are those that have residual

budget at that level
 Every other task is immediately terminated as their claiming CPU time would

imperil the feasibility of tasks at level Q ൒ ܮ ൅ 1
 Associated scheduling analysis algorithms ensure that schedulability is always

guaranteed at the higher levels, in a cascading fashion

 No industrial-quality results as yet …
 Unsolved real-world issues and doubts on the sanity of this model

 Termination, no return to lower “critical levels”, no functional dependence, …

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 21 of 35

Containers are essential here
but not much discussed!

Survivability

 The system capacity to continue to deliver essential
services in the event of internal or external failure
 Executing longer than budgeted is an error state arising from a

development fault but not necessarily a system failure
 Missing a deadline might be a system failure if there is no residual

utility in later completion
 Survivability might require system reconfiguration into an

acceptable degraded form
 The assurance goal of reconfiguration for survivability is

graceful degradation
 The assurance goal of tolerating overruns is partitioning integrity

 Reconfiguration has requirements that are poorly captured
in the current MCS theory

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 22 of 35

Symmetric guarantees

 Overarching goal: every part stays within their assigned
bounds regardless of any other considerations

 More traditional ambit
 Various solutions

 Resource-reservation kernels
 Hierarchical budget servers
 Partitioning (dislocation)
 Hypervisoring with or without virtualization

 Yet, no option can achieve true time isolation, short of
using custom HW
 All budgeting must overprovision to compensate for intrinsic

interference

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 23 of 35

All these architectures are
evidently based on containers!

A heavy-weight experimental architecture

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 24 of 35

Symmetric
in concept

Asymmetric in
provisioning

What kind of containers here?

Performance and guarantee trade-offs

 The “UNC” MC2 architecture rests on important
postulates backed by research results
 Partitioned scheduling is better when higher assurance

guarantees are sought
 Trades performance for time predictability
 Cyclic executive vs priority scheduling trade-off not obvious

 Global scheduling is preferable when higher guaranteed
utilization is sought
 Higher run-time overhead for higher performance
 Solutions are needed to maximally bound OS interference

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 25 of 35

Bounding contention: HW /1

 L1 cache  already partitioned
 L2 cache from shared (why?) to partitioned
 Set partitioning (page colouring)
 Way partitioning
 Combined

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 26 of 35

Bounding contention: HW /2

 DRAM from shared to partitioned
 The extent of benefit depends on the proportion of L2

that can be privately assigned

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 27 of 35

Bounding HW contention /3

 Or taking a totally different turn and
going probabilistic

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 28 of 35

Bounding HW contention /4

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 29 of 35

Bounding HW contention /5

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 30 of 35

Bounding RTOS interference

 The RTOS must be made either time composable
 Which requires a much needed revamp for zero-interference

constant-time response time
 Or be rendered isolated
 Which requires it to take

part in the partition allocation

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 31 of 35

This is still
Jim Anderson
@ WATERS

2015

Bounding SW contention /1

 What if you share SW resources
across supposedly isolated programs?

 Bad things happen …
 But I have never seen a “system” in which the

application programs do not share logical resources
 Do they in IMA?
 Of course they do: “communalizing” services was a

distinct purpose of it

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 32 of 35

Bounding SW contention /2

 The premises on which single-runner sharing
solutions based now fall apart
 Suspending is no longer conducive to earlier release of

shared resource  parallelism gets in the way
 Boosting the priority of the lock holder does not too 

per-CPU priorities may not have global meaning
 Having local and global resources causes suspending to

become dangerous  local priority inversions may occur
 Spinning protects against that hazard but wastes CPU

cycles

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 33 of 35

Bounding SW contention /3

 (Bad News) Theorem
 Under non-global scheduling (for cluster size) it is

impossible for a resource access control protocol to
simultaneously:
 Prevent unbounded priority-inheritance (PI) blocking
 Be independence-preserving

 Tasks do not suffer PI-blocking from resources they do not use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded PI-blocking
requires inter-cluster job migration (!)

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 34 of 35

B. Brandenburg, 2013

Conclusions

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 35 of 35

 How badly do we need a good system architecture!
 Analysis work should descend from it
 Not quite the converse …

