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Disclaimers /1

 This talk addresses the MC2 (mixed-criticality on 
multicore) systems problem space

 This slant is consistent with the grander challenge
of the hosting EMC2 project (supposedly)

 And it matches the dominant direction of the MCS 
research by the real-time systems community
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Disclaimers /2

 This presentation uses material from
 Jim Anderson’s (UNC) keynote talk at WATERS 2015
 The PROXIMA project tutorial at ESWEEK 2015
 A technical report by Vincent Nelis (CISTER)
 A couple of earlier presentations of mine

 But this is not stale and old material because it 
addresses a 
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Understanding the MCS question

 The advent of multicore processors creates a wave 
of opportunities and challenges in many application 
domains

 Opportunity
 Transition from federated systems (with unwelcome 

harness, unused spare, workmanship hazard) to 
integrated systems with some degree of isolation

 Challenge
 The integration solutions adopted for single processors 

do not scale well
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Understanding the ex-ante /1

 The integration solutions for single processors fall 
under the umbrella term of TSP (time and space 
partitioning)
 Memory space is segregated by design and supervised at 

partition switches
 Caches are flushed on partition switch so that there is no inter-

partition interference

 Time is allocated in slices to partitions and partitions do what 
they please with their slices
 Slice overruns are prevented by margin provisioning (insufficient 

science but sufficient confidence or extreme scientific pessimism)
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Understanding the ex-ante /2

 The TSP model is typified by the IMA (integrated 
modular avionics) and its ARINC 653 interpretation

Courtesy of
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Understanding the ex-ante /3

 The TSP model silently builds on the single-runner
assumption
 The intrinsic reality of single-CPU computing 

 Execution is strictly sequential
 Concurrency is obtained by transparent interleaving

 The level of underutilization caused by overprovisioned
static allocation is naturally upper bounded by the 
limited CPU capacity available

 The waste is more than offset by securing the grail 
of incremental development and qualification (IDQ)
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Understanding IDQ /1

 In general, one pursues IDQ by separating 
application contents (considered in isolation) from 
their individual system container
 The former is a distinct part of the application (aka 

component), independently developed or supplied
 The latter is the cocoon that the system architecture 

wraps around individual components to assure 
conformance to the required model of computation and 
the sought guarantees of sufficient independence
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Understanding IDQ /2
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Understanding IDQ /3

 Industry wishes IDQ to be preserved on transition 
to multicore processors

 Perhaps, even at the cost of hitting
the notorious “one out of m” problem

 The MCS RT literature makes a number of strong 
assumptions here that we should look into carefully
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When using an m-core platform in a safety-critical domain, analysis 
pessimism can be so great that the capacity of the “additional” m 
1 cores is entirely negated

Jim Anderson @ WATERS 2015



Understanding the ex-ante /4

 Why is multicore timing analysis prone to gigantic 
pessimism?

 Because the single-runner assumption just breaks on 
transition to multicore processors

 Conventional HW architectures have numerous sources 
of interference among parallel co-runners
 Difficult to avoid, short of imposing a single runner per time 

slice for the whole system
 Which – hopefully – is unspeakable

 Difficult to bound, short of massive overprovisioning that 
defeats the purpose
 Which is bad
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Understanding the ex-ante /5
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Composability & compositionality /1
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Composability & compositionality /2

 The single-runner model of computation of 
traditional processor HW allows systems to enjoy 
some extent of time composability (TC)
 Intrinsic at the HW level
 Aided by design and implementation choices at SW level

 Multicore processor architectures shatter 
those premises and TC can longer be attained

 The question then becomes whether TC has more 
shades of grey than just all-or-nothing
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Ramifications /1

 With IDQ, distinct application parts may be developed 
at different levels of integrity
 The essential obligations attached to them are sanctioned by 

the customer in contractual arrangements
 Calling a given API, limiting the footprint, living within a bounded 

execution time budget, meeting all application requirements, … 
 Responded by the supplier with the provision of factual 

evidence and assurance of given guarantees
 As those guarantees may be insufficient, safeguarding 

measures must be adopted against violations
 By architectural choices and run-time means
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Intentionally  avoiding use 
of  the term “criticality”



Ramifications /2

 The ‘C’ in MCS makes rather lax use of the 
term “criticality” to mean something else really

 The central concern of the mixed-criticality analysis model
is the WCET of SW programs

 But “criticality” does not correspond (directly) to it!
 In the same vein, some authors relate “criticality level” 

to SIL (safety integrity level) 
 But this is equally doubtful as the SIL concept is related 

to importance and confidence
 This abuse has given rise to quite some confusion and a 

number of ill-founded speculations
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Insert: understanding SIL
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As in 
development process

P. Graydon and I. Bate
Safety assurance driven problem formulation for 
mixed-criticality scheduling
Workshop on Mixed-Criticality Systems @ RTSS 2013
http://www-users.cs.york.ac.uk/~robdavis/wmc2013/
paper14.pdf

The link from this to WCET is far removed



Ramifications /3

 Time is the principal area of concern for misbehaviour 
in real-time systems, so that’s what we talk about here

 Two contrasting high-level goals around time
 High schedulable utilization (aka, maximum guaranteed 

performance) 
 Sufficient guarantees that the important services are always 

delivered in time (no hard deadline miss)
 Two alternative solution architectures

 Asymmetric guarantees: one-level scheduling with some 
run-time monitoring

 Symmetric guarantees: multi-level scheduling or hierarchical 
execution with run-time enforcement

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 19 of  35



Memento

 Assuming we know how to compute the WCET of 
SW programs running on a multicore
 (Which we don’t really …)

 We can first consider the system architecture 
challenge

 And then return to the WCET analysis problem
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Asymmetric guarantees

 Overarching goal: low-importance low-guarantee parts cannot cause higher-
importance parts to miss their deadline
 If a task executes longer than budgeted at the current “criticality” L, L is raised 

to L+1 (higher)
 The only tasks that can continue executing at L+1 are those that have residual 

budget at that level
 Every other task is immediately terminated as their claiming CPU time would 

imperil the feasibility of tasks at level  Q ൒ ܮ ൅ 1
 Associated scheduling analysis algorithms ensure that schedulability is always 

guaranteed at the higher levels, in a cascading fashion

 No industrial-quality results as yet …
 Unsolved real-world issues and doubts on the sanity of this model

 Termination, no return to lower “critical levels”, no functional dependence, …
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Containers are essential here
but not much discussed!



Survivability

 The system capacity to continue to deliver essential 
services in the event of internal or external failure
 Executing longer than budgeted is an error state arising from a 

development fault but not necessarily a system failure
 Missing a deadline might be a system failure if there is no residual 

utility in later completion
 Survivability might require system reconfiguration into an 

acceptable degraded form
 The assurance goal of reconfiguration for survivability is 

graceful degradation
 The assurance goal of tolerating overruns is partitioning integrity

 Reconfiguration has requirements that are poorly captured 
in the current MCS theory
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Symmetric guarantees

 Overarching goal: every part stays within their assigned 
bounds regardless of any other considerations

 More traditional ambit
 Various solutions

 Resource-reservation kernels
 Hierarchical budget servers
 Partitioning (dislocation)
 Hypervisoring with or without virtualization

 Yet, no option can achieve true time isolation, short of 
using custom HW
 All budgeting must overprovision to compensate for intrinsic 

interference
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All these architectures are 
evidently based on containers!



A heavy-weight experimental architecture
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Symmetric 
in concept

Asymmetric in 
provisioning

What kind of  containers here?



Performance and guarantee trade-offs

 The “UNC” MC2 architecture rests on important 
postulates backed by research results
 Partitioned scheduling is better when higher assurance 

guarantees are sought
 Trades performance for time predictability
 Cyclic executive vs priority scheduling trade-off not obvious

 Global scheduling is preferable when higher guaranteed 
utilization is sought
 Higher run-time overhead for higher performance
 Solutions are needed to maximally bound OS interference
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Bounding contention: HW /1

 L1 cache  already partitioned
 L2 cache from shared (why?) to partitioned
 Set partitioning (page colouring)
 Way partitioning
 Combined
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Bounding contention: HW /2

 DRAM from shared to partitioned
 The extent of benefit depends on the proportion of L2 

that can be privately assigned
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Bounding HW contention /3

 Or taking a totally different turn and
going probabilistic
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Bounding HW contention /4
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Bounding HW contention /5
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Bounding RTOS interference

 The RTOS must be made either time composable
 Which requires a much needed revamp for zero-interference 

constant-time response time
 Or be rendered isolated
 Which requires it to take

part in the partition allocation
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This is still 
Jim Anderson   
@ WATERS 

2015



Bounding SW contention /1

 What if you share SW resources 
across supposedly isolated programs?

 Bad things happen …
 But I have never seen a “system” in which the 

application programs do not share logical resources
 Do they in IMA?
 Of course they do: “communalizing” services was a 

distinct purpose of it

T. Vardanega (UNIPD) HiPEAC 2016 EMC^2 Workshop 32 of  35



Bounding SW contention /2

 The premises on which single-runner sharing 
solutions based now fall apart
 Suspending is no longer conducive to earlier release of 

shared resource  parallelism gets in the way
 Boosting the priority of the lock holder does not too 

per-CPU priorities may not have global meaning
 Having local and global resources causes suspending to 

become dangerous  local priority inversions may occur
 Spinning protects against that hazard but wastes CPU 

cycles
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Bounding SW contention /3

 (Bad News) Theorem
 Under non-global scheduling (for cluster size ) it is 

impossible for a resource access control protocol to 
simultaneously:
 Prevent unbounded priority-inheritance (PI) blocking
 Be independence-preserving

 Tasks do not suffer PI-blocking from resources they do not use
 Avoid inter-cluster job migration

 Seeking independence preservation and bounded PI-blocking 
requires inter-cluster job migration (!)
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B. Brandenburg, 2013



Conclusions
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 How badly do we need a good system architecture!
 Analysis work should descend from it
 Not quite the converse …


