

ARTEMIS 2013 AIPP5 EMC²

A Platform Project on Embedded Microcontrollers in Applications of Mobility, Industry and the Internet of Things

May 26th, 2015, Paris, France Werner Weber Infineon Technologies AG Werner.Weber@infineon.com +49 89 234 48470

... in cooperation with entire Project Management Team

Motivation for EMC²

- Very fast technological advances of µ-electronics in past decades
- > Amazing capabilities at lowered cost levels
- Today primarily exploited in consumer-oriented products
- Systems quickly put together since the next technology generation is already waiting around the corner
- Errors may be tolerated and a new execution attempt started
- This (and similar) way(s) of handling errors feasible for consumer products

Motivation for EMC² (cont'd)

- In professional areas this simplistic approach is not feasible
 - Industrial production
 - Automotive
 - Avionics
 - Space
 - Systems with high data volume such as multi data centers
- > Have to fulfill real-time safety requirements
- It is prime task of EMC² to bring those two worlds together
- Develop methods for safe use of modern embedded multicore controllers
- Help European industry to stay competitive

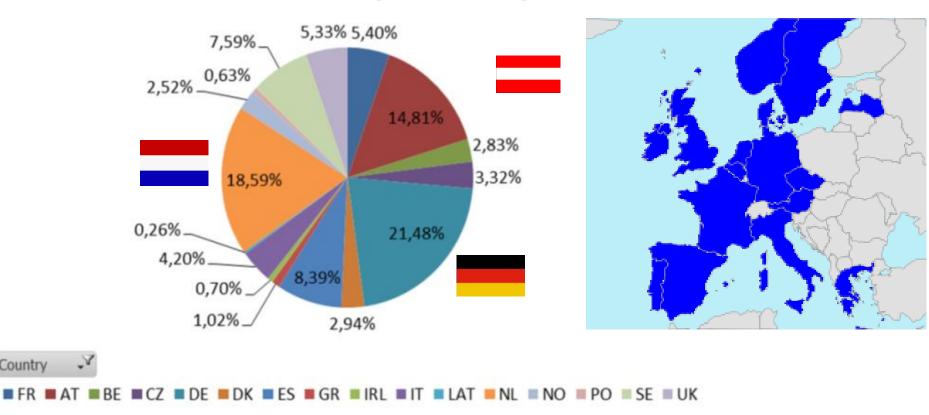
Project Overview Numbers

Embedded Multi-core Systems for Mixed-Criticality Applications in Dynamic and Changeable Real-Time Environments – EMC²

(Artemis Innovation Pilot Project (AIPP)

> AIPP 5:	Computing Platforms for Embedded Systems
Budget:	93.9 M€

- Funding: 15.7 M€ EU funding (Artemis)
 26.7 M€ National funding
- Resources: 9636 person months (803 person years)
- Consortium: 99 Partners, 16 EU Countries + Israel


→ Largest ARTEMIS-JU project ever!

Project Overview European Dimension

% of total costs per country

Country

Reduce Number of Control Units Save cost and increase performance

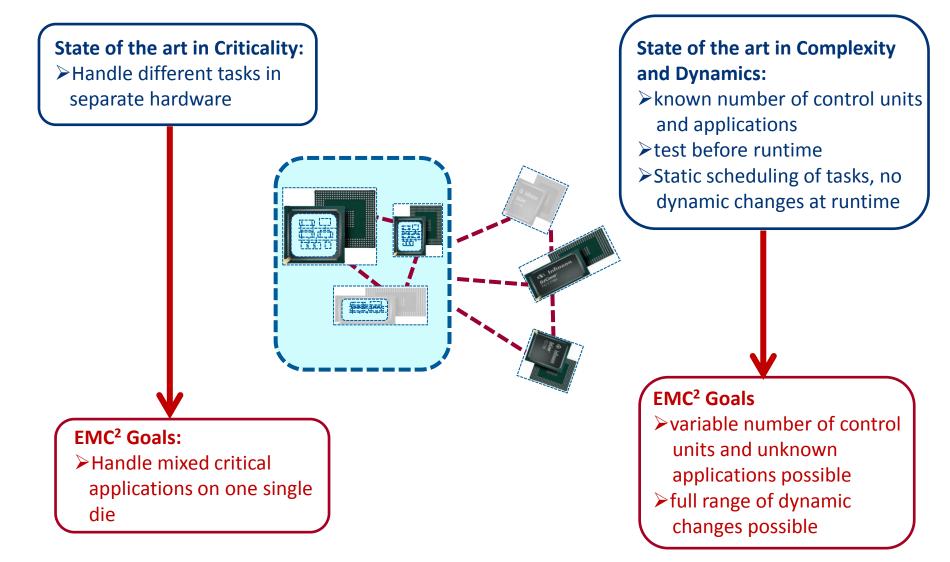
Many heterogeneous single-core systems, specialized for the individual criticality levels

Vision

Aggregate resources In multi/many cores, ECU networks

Multi-core systems for mixed criticalities

systems rticelities



Offer system properties as services and not as independent systems

Cyberphysical System: Criticality, Complexity and Dynamics in Embedded Systems

EMC² Technological innovation

ARTEMIS

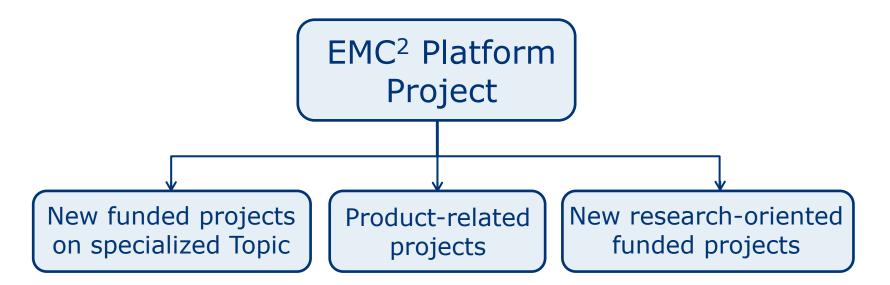
- Mixed Criticality
 - Handle applications with different priorities
- Dynamic Re-configuration
 - Full range of dynamic changes on application level
- Hardware Complexity
 - Variable number of control units at runtime

Economic Impact of EMC²

High impact of embedded systems to *support and drive the innovation* in many important market sectors:

- Automotive: key sector for the European economy, 12 million jobs, 26 billion annual invest in R&D by European car manufacturers; positive contribution to trade balance of € 90 billion p.a.; *embedded systems enable >90% of innovations*.
- Industrial control and factory automation: revenue of 16.5 B€; 30% of energy consumed in the world is used for electric motors. Large potential for energy saving;
- Healthcare: represents 25% of the EU economy; Challenges related to improving efficiency and effectiveness of healthcare

→ Multicore technology as enabler for driving the innovation!



EMC² a large-size project

Large Size platform project EMC²

encourages and catalyzes new consortia on EU level for product-oriented and successive funded projects

Project Management

- A project of this size can be technically managed although it requires significant dedication
- Project Management cares for
 - the overall structure and organizational framework,
 - Contracts (GA, CA, Deliverables)
 - the point of external contact,
 - inter WP relations,
 - the homogeneous look of the project
- A certain degree of de-centralization is necessary: two levels: WP management level; partner level
 - All demos developed on the level of a few partners

Bracket between WPs in EMC²

Application-Oriented Living Labs WPs 7-12

Specifications Mixed criticality, integration, dynamic features, efficient use of resources (WP1)

> Modelling & Analysis (WP2) Services & Runtime (WP3) Hardware platforms (WP4)

System Design Implementation into eco-system (WP5)

Qualification and Certification (WP6)

Application and technology innovation oriented WP structure

Technology innovation oriented work packages

- WP1: SoA Embedded system architecture
- WP2: Executable Application Models and Design Tools for Mixed-Critical, Multi-Core Embedded Systems
- WP3: Dynamic runtime environments and services
- WP4: Multi-core hardware architectures and concepts
- WP5: System design platform, tools, models and interoperability
- WP6: System qualification and certification

> Application innovation oriented WPs (Living Labs)

- WP7: Automotive
- WP8: Avionics
- WP9: Space applications
- WP10: Industrial manufacturing
- WP11: Internet of things
- WP12: Cross domain applications

EMC² Project Architecture

What is unique about EMC²?

 All domains: Home Automation through Automatic Driving
 All areas: Sea, Land, Air and Space
 All driven by Embedded Computing
 All running a mix of applications
 All using Multi-Core ...

... but so far nobody knows how.

Application innovation

- EMC² Embedded Multi-core Systems for Mixed-Criticality Applications in Dynamic and Changeable Real-Time Environments
- > Applications: Automotive, Avionics, Space, Industry, Health care; Infrastructure
- > Improve performance, lower cost
- Improve energy efficiency

Application Topics in EMC²

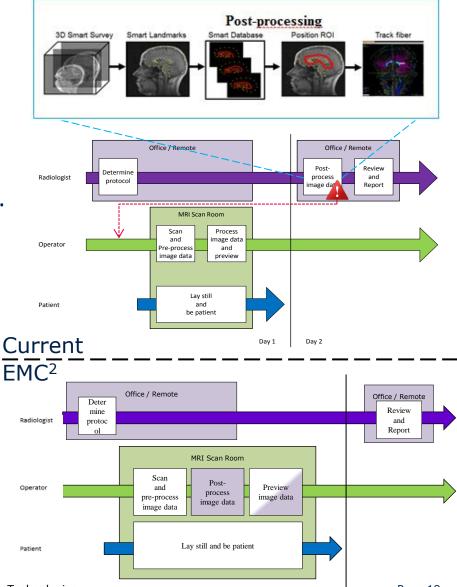
- > Automotive
- Avionics
- Space
- Industrial manufacturing
- Logistics
- IT-infrastructure ('Internet of Things')
- > Healthcare
- ➢ Railway
- Seismic surveying

Application Topics in EMC²

- > Automotive
- Avionics
- Space
- Industrial manufacturing
- Logistics
- IT-infrastructure ('Internet of Things')
- Healthcare
- ➢ Railway
- Seismic surveying

EMC² - Medical Imaging (Philips, TNO, Vector Fabrics, TUDelft)

Objective / Scope


- Today: problems in data acquisition not visible to the operator in examination room → often rescan needed.
- Prevented when multiple mixed-critical systems are combined on hardware level.
- Challenges to manage mixed-criticality

Project Goals

- Reduce number of systems
- Bring reconstruction and postprocessing into examination room

Exploitation

- Prevent patient recall
- Reduce hardware and maintenance cost

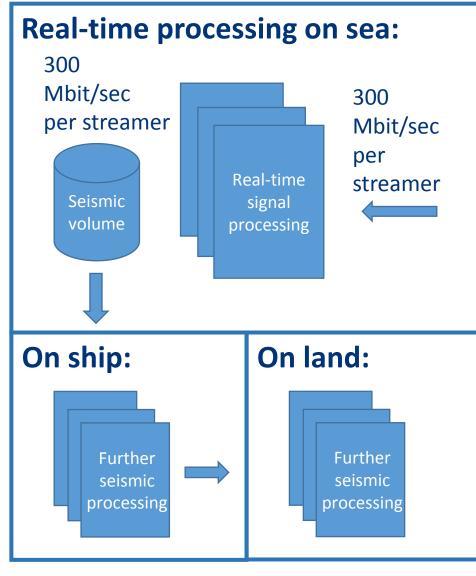
EMC² EMC² Seismic processing (WesternGeco, Simula, U. Oslo, Fornebu, KTH)

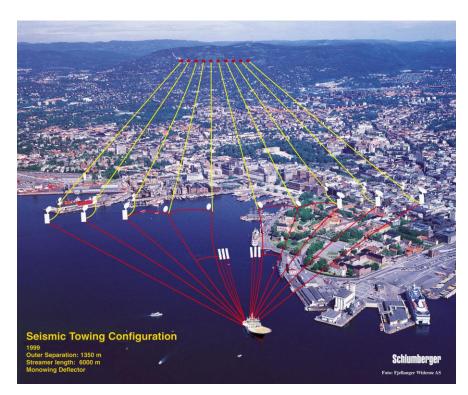
Purpose: Produce images of geological features and their structure below the surface of the earth

On sea:

Networked computers

 In the streamers > 2 000 computers
 Onboard the ship > 200 computers

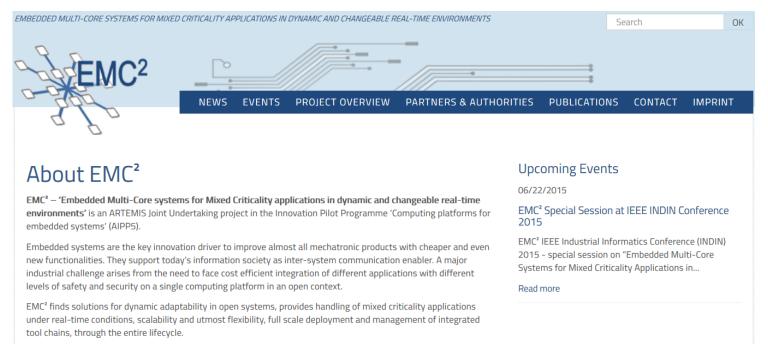

 Compute power > 2 Tflops
 Number of sensors > 200 000
 Huge Data rate 1-3 Gbit/s
 Disk capacity > 100 Tbytes



EMC² Seismic processing (WesternGeco, Simula, U. Oslo, Fornebu, KTH)

200 computers with 4 000 cores

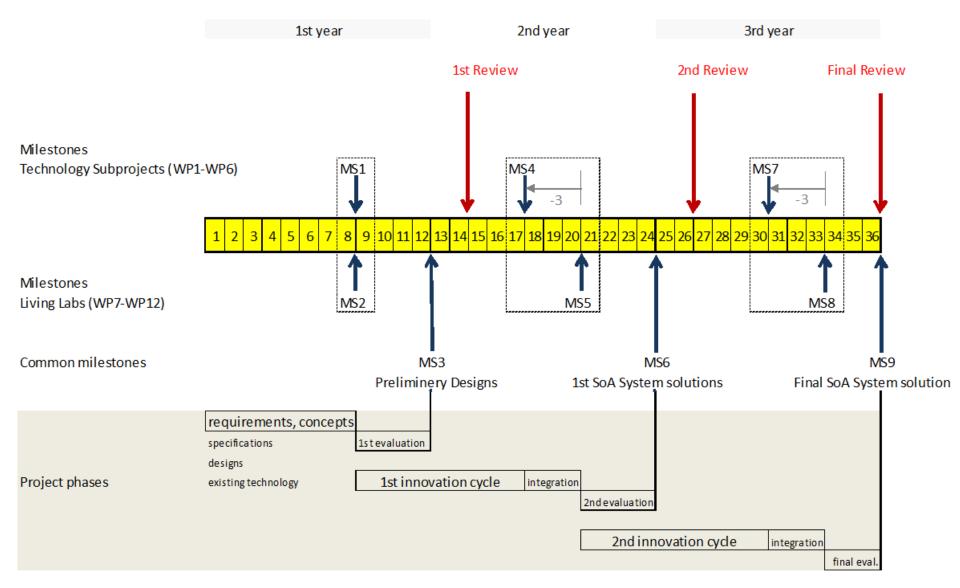
8-14 streamers behind ship
Streamer length 10km - 14 km
100 - 200 computers per streamer
200 000 sensors per streamer



Public project website

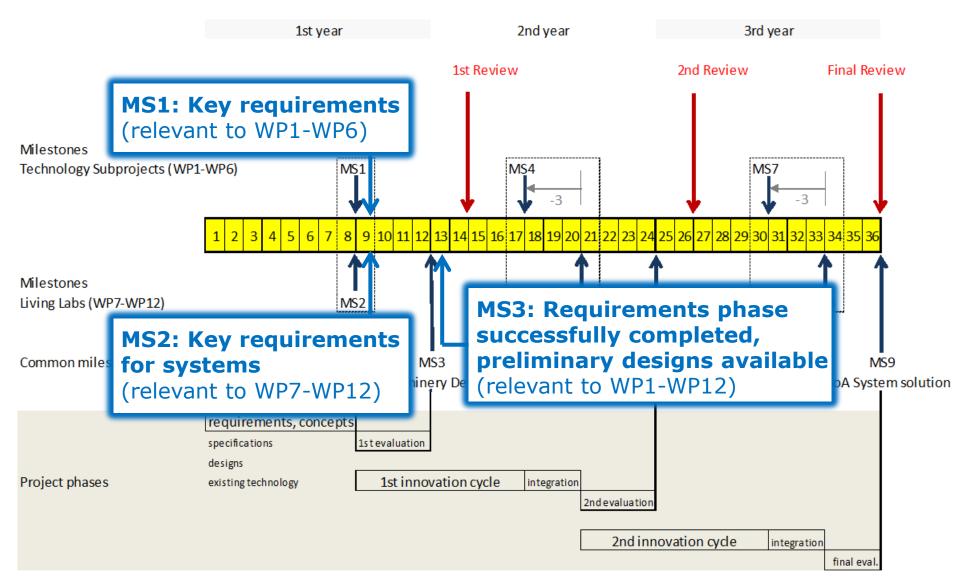
First version online at project start: <u>www.emc2-project.eu</u>

- New and significantly extended version online since beginning of July 2014: <u>www.artemis-emc2.eu</u>
- Website is updated whenever news, events and other information for publication becomes available (latest update after finalisation of the 2nd EMC² Newsletter)



The objective of EMC² is to establish Multi-Core technology in all relevant Embedded Systems domains.

Work Plan



Project monitoring: Milestones MS1, MS2, MS3 achieved

Conclusion

- Project Ramp-up and specification phase successfully completed
- Project on track
 - all deliverables available
 - milestones MS1, MS2, MS3 achieved
 - minor delay compared to plan; likely to be recovered during P2 and P3
- Now project heads for implementation of preliminary designs