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Motivation

Systems are increasingly complex, both in terms of
- application features and complexity
- target architectures, and their constraints

Both hardware and software architectures have to
be considered already in early design phases.

Designh exploration
- Software deployment and task mapping
- Number of processing elements (PES) & cores
- Task priorities, periods, deadlines,
scheduling policy, resource access protocols, ...

Interference analysis

- Data dependent task workload model with
computation times, shared memory read and write
accesses

- Explicit communication and synchronisation
between Tasks

- Physical communication medium transport delays
and arbitration

System validation and refinement requires
fast simulation of early system models.

Application-Level Parallelism

Always simulate task until shared resource access
- even across periods
- collect local trace according to task FSM

Concurrent accesses are arbitrated.

Honour guard conditions in evaluation as well
— Ignore earlier access, iff blocked by guard.
- update blocking times after decoupled access

Mixed Criticality Model

Finite set of Applications A, with
- criticality level L,
- with set of Tasks T,
- with set of Shared Objects S,
Each Task t,in T, is defined by (P;, D,, C, SI, L) with
- period (mlnlmum arrival time) P
- deadline D
- workload and memory access graph C
- ports to Shared Object Interfaces Sl in S,.I
- criticality level L
Each Shared Object S, consistst of
- a set of Interfaces |, with methods m, in i, in li
(let M, be the union of all methods in |.)
- a set of side effect free Guards G,
- a set of guarded methods GM.in M. x G,
implementing all interfaces methods M.
- a shared resource access arbitration policy

Hierarchical Scheduling

RS,, RS, : Runtime System Scheduler
too, o1 : Tasks of RS,

t, ot 4, 1, - Tasks of RS,
Sy, S, : Shared Objects of RS,
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Application Layer

OSSS (Oldenburg System Synthesis Subset) Is a
C++ and SystemC-based simulation environment.

Modelling starts on Application Layer, with an
executable, functional specification.

System consists of Tasks (T) communicating via
Shared Objects (S).

Shared Objects enable high-level, method-based,
communication via user-defined transactions.

Task dependencies can be expressed explicitly
and implicitly through Shared Object synchronisation.

Virtual Target Architecture (VTA) Layer

During refinement, components of Application Layer
are mapped to Virtual Target Architecture:
- Tasks onto runtime sytems
- Shared Objects to dedicated hardware blocks
or shared memory

Scheduling of associated tasks
- Task state management ensures, that only one
task per PE is running at a given time.
- Activation of periodic tasks, deadline observation.
- Time synchronisation and modelling of preemption.

Order of accesses
- to single shared resource have to stay the same!
- to different resources may differ, without impairing
functional correctness.
Local Guarantee
- Accessing task is not preempted/delayed by other
local tasks on the same processing unit.
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Goal: Timed Functional Simulation and Interference Analysis

Explicit communication via Shared Objects

Task communication/synchronisation
modelled explicitly via Shared Objects.

- User-defined, method-based interfaces.

Guard conditions
- or guarded methods
- Boolean conditions, depending
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