Timed Functional Simulation and Interference

Analysis of Mixed-Criticality Applications

EMC?

Philipp A. Hartmann, Philipp Ittershagen, Kim Gruttner

Hardware/Software Design Methodology Group, R&D Division Transportation

OFFIS - Institute for Information Technology, Oldenburg, Germany
{philipp.hartmann, philipp.ittershagen, kim.gruettner}@offis.de

Motivation

Systems are increasingly complex, both in terms of
- application features and complexity
- target architectures, and their constraints

Both hardware and software architectures have to
be considered already in early design phases.

Designh exploration
- Software deployment and task mapping
- Number of processing elements (PES) & cores
- Task priorities, periods, deadlines,
scheduling policy, resource access protocols, ...

Interference analysis

- Data dependent task workload model with
computation times, shared memory read and write
accesses

- Explicit communication and synchronisation
between Tasks

- Physical communication medium transport delays
and arbitration

System validation and refinement requires
fast simulation of early system models.

Application-Level Parallelism

Always simulate task until shared resource access
- even across periods
- collect local trace according to task FSM

Concurrent accesses are arbitrated.

Honour guard conditions in evaluation as well
— Ignore earlier access, iff blocked by guard.
- update blocking times after decoupled access

Mixed Criticality Model

Finite set of Applications A, with
- criticality level L,
- with set of Tasks T,
- with set of Shared Objects S,
Each Task t,in T, is defined by (P;, D,, C, SI, L) with
- period (mlnlmum arrival time) P
- deadline D
- workload and memory access graph C
- ports to Shared Object Interfaces Sl in S,.I
- criticality level L
Each Shared Object S, consistst of
- a set of Interfaces |, with methods m, in i, in li
(let M, be the union of all methods in |.)
- a set of side effect free Guards G,
- a set of guarded methods GM.in M. x G,
implementing all interfaces methods M.
- a shared resource access arbitration policy

Hierarchical Scheduling

RS,, RS, : Runtime System Scheduler
too, o1 : Tasks of RS,

t, ot 4, 1, - Tasks of RS,
Sy, S, : Shared Objects of RS,

7

/\

|
OFFIS

INSTITUTE FOR
INFORMATION TECHNOLOGY

Modelling and Refinement for Mixed-Criticality Applications

————
-

/
0SSS ! 0SSS
Runtlmel Runtime
/ RTOS // 4 RTOS y.
PEO 7 PE 1.0 PE 1.1
Shared Dedicated
Memory Hardware
wait

release

\

8/

unblock

deassign

grant

blocked

initiate

‘;
unblock
requires assigned optionally require common decoupling
processing unit processing unit —A transition —A transition
never requires may be extended heduled
: : due to local/global scheaule
processing unit O resource sha?ring —A transition
Application
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
. | | | | | | | | | . | | | | | | | | |
time | I I I I | | time I I I I I I I |>
T T T U U U |> T T T T U U T
oo} O 0 IR oo b o
I I | L | | | | | I I I 1 o I I I I
LI 2 B o R woote oo n
b om0 1 obomm: | 0001
| | . | | | | | | | ___:-___:-___:‘___:___:___:___:___:___:_
| 1 ., 1 | | | | | | | | | | | | |
it e ot 0
| 1 1 | | | | | | | | ! | ! ! | |
b S I |,
T o T, o
Unscheduled No preemption, Suspended

Application Layer

OSSS (Oldenburg System Synthesis Subset) Is a
C++ and SystemC-based simulation environment.

Modelling starts on Application Layer, with an
executable, functional specification.

System consists of Tasks (T) communicating via
Shared Objects (S).

Shared Objects enable high-level, method-based,
communication via user-defined transactions.

Task dependencies can be expressed explicitly
and implicitly through Shared Object synchronisation.

Virtual Target Architecture (VTA) Layer

During refinement, components of Application Layer
are mapped to Virtual Target Architecture:
- Tasks onto runtime sytems
- Shared Objects to dedicated hardware blocks
or shared memory

Scheduling of associated tasks
- Task state management ensures, that only one
task per PE is running at a given time.
- Activation of periodic tasks, deadline observation.
- Time synchronisation and modelling of preemption.

Order of accesses
- to single shared resource have to stay the same!
- to different resources may differ, without impairing
functional correctness.
Local Guarantee
- Accessing task is not preempted/delayed by other
local tasks on the same processing unit.

time : | | | .
T T T T T T T T I) : .
| | | T | | | | | | . * arrival
T I I I I I :
01 | | | | | .
| | L | | | | | R preemption
T :T_E- AR | |
- : : : : I I : running
T2 1 kI‘ 1 1 1
____ blocked
| 1 | | | | | .
T3 : T | : : : ﬂ : : g access res. X
: : : ! ! ! , ! : (sync required)
n o :
, | ; | ; accessonres. X
T f | | | | (decoupled)
5

Priority Inheritance, Suspended

Goal: Timed Functional Simulation and Interference Analysis

Explicit communication via Shared Objects

Task communication/synchronisation
modelled explicitly via Shared Objects.

- User-defined, method-based interfaces.

Guard conditions
- or guarded methods
- Boolean conditions, depending

HW Shared Object

|n|t|ate call .
TR ide | :
call:granted

Client

(interrupt)

return
ready

— — ———

return value

Client i

...........
.
ot
.

. 4, Shared Object

shared memory

----------- > Communication from Client to SO

.
.
. .t

— — —>» Event notification SO to Client

. _ - :

met% da message register : :
/i 8na Cligns /] '\ arguments ready :
/ Il statusregister | \ _______
e T : running
l I :
~ —_—]
| arguments T - :

mapped i return value ready

SW Shared Object

T 5 ' ; - User-defined scheduler and resource on object’s state
/ So 1.0 access protocol. - Can block a caller, until
tog =l 4
i el . : condition holds
S oo A with L, = Lo_ Mutual exclusive access ensures consistency.
h P [Ty} e |
OSSS OSSS R put_if get_if
RU ntime Untl me put(Type get() : Type
A A
" «" I | my_class<Type>, | :
|
——————— Get Port
OSSS Shared Object : / =T
Runtime PutPort 1 T - :
0 \ _T_yEe___:— : port->get();C
\ my class [=[===—=—2
é };;J.':t—>put(...) g ST
Software C put(Type)
is_empty() : bool
Processor(s) is_full() - bool -
port->get () ;
RTOS TN e;

References and further readings

7th IFIP Conference on Distributed and Parallel Embedded Systems (DIPES), 2010
Invocation. The 2011 Electronic System Level Synthesis Conference (ESLsyn), 2011

Systems. OFFIS Technical Report, 2013

The Fourth IEEE Workshop on Self-Organizing Real-Time Systems (SORT) 2013

[1] Philipp A. Hartmann, Philipp Reinkemeier, Henning Kleen and Wolfgang Nebel: Efficient modelling and simulation of embedded software multi-tasking
using SystemC and OSSS. Forum on Specification, Verification and Design Languages (FDL), 2008

[2] Philipp A. Hartmann, Kim Gruttner, Achim Rettberg and Ina Podolski: Distributed Resource-Aware Scheduling for Multi-Core Architectures with SystemcC.

[3] Philipp A. Hartmann, Kim Gruttner, Philipp Ittershagen and Achim Rettberg: A Framework for Generic HW/SW Communication using Remote Method

[4] Philipp Reinkemeier, Philipp Ittershagen, Ingo Stierand, Philipp A. Hartmann, Stefan Henkler and Kim Grtttner. Seamless Segregation for Multi-Core

[5] Philipp Ittershagen, Philipp A. Hartmann, Kim Grittner and Achim Rettberg: Hierarchical Real-Time Scheduling in the Multi-Core Era - An Overview.

