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Summary 
 

This deliverable is presenting enhanced demonstration platforms including basic innovative techniques in 

form of demonstrators prepared by WP4 partners in the EMC
2
 project. It describes following 

demonstrators: 

 

 EMC
2
 SoCRocket - transaction-level modelling framework for space applications 

 Asymmetric Multiprocessing on Zynq and HDMI I/O demonstrator 

 Dependable and high accuracy time transfer for distributed control applications 

 Automotive domain: network technologies and connection to testbed  

 Multi-processor system-on-chip architecture for cross-domain applications 

 Automotive time-of-flight demonstrator 

 Fine grain partially reconfigurable array of processors on Zynq with Linux support 

 HDMI-In video processing to HDMI-Out controlled by Ethernet port on Zynq 

 Demonstrator platform for multicore avionic systems on Zynq 

 

 
 

WP4 tasks T4.2 T4.3 and T4.4 cooperating with T4.6 in the D4.16 demonstrator’s development  

 

This enhanced demonstration platforms including basic innovative techniques milestone present the status 

of developments within the WP4 package in the middle of the EMC
2
 project. Demonstrators form 

concrete base for the collaboration and developments in the EMC
2
 project.  

 

 

  

T4.2 

T4.3 

T4.4 
T4.6 
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1. Introduction 

WP4 of the EMC
2
 project deals with new multi-core hardware architectures and concepts. 

 

This deliverable is presenting eight early demonstrators provided by EMC
2
 WP4 partners at month M8 of 

the project. These contributions form concrete base for the collaboration and future developments in the 

EMC
2
 project. 

 

Each contribution is describing an overview of the early demonstrator and it is pointing to detailed 

information and documentation provided by individual partners.  

 

We have selected this format to motivate the bottom up cooperation of partners within WP4, with other 

technical work packages, and cooperation together with the Living Labs partners of the EMC
2
 project. 

 

Workpackage 4 is focusing on four technology lanes:  

(1) Heterogeneous Multiprocessor SoC architectures  

(2) Dynamic reconfiguration on HW accelerators and reconfigurable logic  

(3) Networking  

(4) Virtualization and verification technologies  

 

This deliverable describes wp4 demonstrators for Technology Lanes (1), (2), (3) and (4). 

Contributions to these technology lines are indicated in each chapter. The concrete technical topics are 

also visualized on the symbolic „architecture“ by a bullet. 
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2. EMC
2
 SoC-Rocket –Virtual Platform Framework 

 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  
 Dynamic reconfiguration on HW accelerators and 

reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

Increasingly large portions of electronic systems are being implemented in software and its development 

cost starts dominating the overall system's cost. Software is also becoming the critical part of the 

development schedule, mainly because deploying and testing it on the real target hardware is 

complicated. 

 

Transaction Level Models (TLMs) are used to describe both, timing and functionality, of system 

components and their communication interfaces at a high abstraction level. Embedded in a virtual 

platform, these models are sufficiently accurate to allow early software development and verification in a 

realistic environment and functional verification of the modeled hardware. The capability of early design-

space exploration is therefore a vital building block of full hardware/software co-design. 

 

To achieve these goals, we designed the SoC-Rocket Framework. Written in SystemC/TLM, it is fitted to 

serve the industry's special needs. It already builds the foundation of space-domain ESL design. We tied 

together the following features to enable the construction of virtual platforms for various applications: 

 

 Models - All models are designed to simulate their corresponding counterparts from the 

COBHAM/Aeroflex Gaisler GRLib (also available under GPL) 

 Platform Generator - Easy configuration via GUI or from the command line 

 Automation Tools - To run big batches of design-space explorations 

 Infrastructure - Reusable components for building new components at ease 

 Build System - Extended build system for compiling models, platforms, target software, RTL co-

simulations, and regression tests 

 

2.1 Overview 
 

Our activities in this project aim towards 

implementation and validation of an 

efficient methodology allowing software to 

be developed before the final hardware is 

ready. We have therefore developed a 

design flow for the implementation of 

virtual platforms (VP) based on TLM in 

SystemC. 

 

To support the developed design flow it was 

mandatory to stock it up with basic models 

and a supportive foundation. This allows the 

users to be faster through reuse of already 

existing components. It also gives model developers a starting point to derive their models from. 

 

The outcome of this project is now bundled as a library, which we call the SoC-Rocket – Virtual Platform 

Framework. 

 

Hence the free availability of the COBHAM/Aeroflex Gaisler GRLib Components we designed our 

Models to behave alike, therefore all models found in the SoC-Rocket Framework have a corresponding 
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Figure 1: SoC-Rocket Models 

http://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/index.php/downloads/leongrlib
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RTL component in the GRLib. Platforms constructed and tested in our Framework can easily be migrated 

to the GRLib and simulated and synthesized at RTL level. 

 

2.2 Infrastructure 
 

As foundation (orange) for our library we 

selected a series of appropriate infrastruc-

ture components and built a layer of 

abstraction upon them (red). 

 

We contribute a modeling kit for fast TL 

signal communication to the foundation. 

Throughout the library the SignalKit is 

used to model interrupt lines, reset and 

snooping. As well as an extended logging 

mechanisms, sr_report, especially useful 

for simulation observation and output. It 

can be configured in seven levels that can 

be set globally or for a single module. A model registry (sr_registry) can be used to dynamically 

instantiate models and prevent recompilation. And last but not least we extended the gs_params with meta 

parameters to allow easy handling of meta information in addition to generics, registers and other non 

memory mapped data. 
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Figure 2: SoC-Rocket Structure 



ARTEMIS Call 2013, project 621429  EMC²
 

 

 

 

D4.16_PU - Enhanced Demonstration Platforms  Page 10 of 40 

 

 

One of the main purposes of the 

library is to leverage the development 

of new components and to test them 

on system level before going to RTL. 

To make this as easy as possible we 

provide a set of library base classes 

encapsulating the communication and 

the storage part of the models. All 

our models, except the AHBCTRL 

are structured this way.  

 

On the left side of the previous figure 

you see a typical AHB master 

component. The model is a C++ class 

which inherits a register file and an APB slave socket from class APBSlave and an AHB master socket 

from class AHBMaster. The user ought to fill out the behavior, which is the green part in the middle. For 

access to the sockets there is a simple read/write API. The register file can be equipped with callbacks for 

read and write operations to any register or bit field. In AT mode the port interface triggers a response 

function in the behavior, as soon data is available at the socket. 

 

Slaves are structured in a similar ways. Only this time the implementing module inherits from class 

AHBSlave giving it an AHB TLM target socket. For any request the slave interface triggers a callback in 

the behavior. All details of the state machines in the front-end are hidden. 

 

2.3 Conditions for use, downloads 
 

In the last 20 months TU Braunschweig (c3e) was extending, debugging and stabilizing the framework as 

a preparation to publish it to the project consortium with legwork and support by TU Dortmund. 

Furthermore, confidential components were removed and replaced to smooth out some legal issues.  

 

In addition to that the following changes are made from D4.15: 

 Deep introspection via sr_report and USI 

 NoC and Network interface models (in separated repository) 

 Introducing ARM Cortex-A9 Processor 

 Introducing Predictable Caches for LEON and ARM 

 GREth model (in separated repository) 

 GreenReg replaced by sr_register 

 GreenControl gs_param were replaced by sr_params 

 LEON3 CPU Fixes for better interrupt handling 

 AHBCtrl speed up, APBUart improvements 

 And many more (see commit log) 

 

You can find our code and documentation at http://socrocket.github.io/ 

 

Download the core platform for EMC
2
 partners from https://github.com/socrocket/core. The code is 

available under AGPL. Additional repositories or license schemes are available. Please contact us:  

 

Contact:  

 TU Braunschweig, c3e, Rolf Meyer, meyer@c3e.cs.tu-bs.de, +49 531 391 2378 

 TU Braunschweig, c3e, Jan Wagner, wagner@c3e.cs.tu-bs.de, +49 531 391 2387 

 TU Dortmund, Lilian Tadros, lillian.tadros@tu-dortmund.de, +49 231 755-4670 

 

Figure 3:  Model design 

http://socrocket.github.io/
https://github.com/socrocket/core
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3. Asymmetric Multiprocessing on ZYNQ and HDMI I/O demonstrator 
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  

 Dynamic reconfiguration on HW accelerators  
            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   

 

This section describes two demonstrators on the Trenz electronic TE0720-02-2I System on Module 

(SOM) [2] and the TE0701-05 carrier board [3]. See Figure 4. 

 

The asymmetric multiprocessing demonstrator design is integrating on ZYNQ one ARM Cortex A9 

processor with vector floating point accelerator NEON, one MicroBlaze processor and four run-time 

reprogrammable (8xSIMD) EdkDSP floating point accelerators in the programmable logic of ZYNQ [4].   

 

The HDMI I/O describes four different designs demonstrating the HDMI output HDMI input [14] and 

Vita 2000 color video sensor input [16], in full HD resolution (1920x1080p60).  

 

All designs are precompiled in Xilinx Vivado 2015.2 [5] and aim to support the Software Defined System 

on Chip tool chain SDSoC 2015.2 [20] introduced in summer 2015 by Xilinx. All designs aim to be in the 

future portable to the EMC
2
-DP platform [15] developed by Sundance. See Chapter 9.  

 

3.1 Key features of the AMP demonstrator with EdkDSP accelerators 
 

This application note describes the asymmetric multiprocessing design (AMP) based on the Xilinx 

application note XAPP1093 [1]. The AMP design has been ported from the ISE 14.5 design flow to the 

Xilinx Vivado 2015.2 and SDK 2015.2 design flow. The ARM Cortex A9 processor [4] works together 

with the MicroBlaze processor, sharing the terminal and block ram. Both processors execute program 

from the same external DDR3 memory. The MicroBlaze processor is controlling 4 EdkDSP floating-point 

accelerators. Each accelerator is organised as 8xSIMD reconfigurable data path, controlled by the 

PicoBlaze6 controller [7].  

This demonstrator and related evaluation package is provided by UTIA for the Trenz electronic TE0720-

02-2I System on Module [2] and the TE0701-05 carrier board [3]. These features are demonstrated: 

 

 Implementation of adaptive acoustic noise cancellation on 1 of 4 accelerators is computing the 

recursive adaptive LMS algorithm for identification of regression filter with 2000 coefficients in 

single precision floating point arithmetic with sustained performance  

o 777 MFLOP/s on single 125 MHz (8xSIMD) EdkDSP accelerator 

o 338 MFLOP/s on single  666 MHz ARM Cortex A9 (with the vector NEON  unit) 

o 160 MFLOP/s on single  666 MHz ARM Cortex A9 (with the 32bit floating point unit) 

o   10 MFLOP/s on single 125 MHz MicroBlaze processor (with the 32bit floating point unit) 

 The EdkDSP accelerators can be reprogrammed by firmware. The programming is possible in C with 

the use of the UTIA EDKDSP C compiler. Accelerators can be programmed with two firmware 

programs. Designs can swap in the real time the firmware in only few clock cycles in the runtime.  

 The floating-point applications are scheduled inside of the 8x SIMD EdkDSP accelerator by the 

Xilinx PicoBlaze6 processor [7]. Each firmware program has maximal size of 4096 (18 bit wide 

words). The alternative firmware can be downloaded to the EdkDSP accelerators in parallel with the 

execution of the current firmware. This is demonstrated by swap of the firmware for the FIR filter 

room response to the firmware for adaptive LMS identification of the filter coefficients in the 

acoustic noise cancellation demo. 

 The 8xSIMD EdkDSP accelerator is providing single-precision floating-point results bit-exact 

identical to the reference software implementation running on MicroBlaze processor with the Xilinx 

floating point unit.  
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 The 125 MHz 8xSIMD EdkDSP accelerator is 2,3x faster than the 666 MHz ARM Cortex A9 (with  

NEON vector processing unit) 4,8x faster than the 666 MHz ARM Cortex A9 without code optimized 

for NEON and  78x faster than 125 MHz MicroBlaze with HW floating point unit. These data are 

measured for the presented case of the 2000 tap adaptive LMS filter. 

 The floating-point 2000 tap coefficients FIR filter (acoustics room model) is computed by single 125 

MHz (8xSIMD) EdkDSP accelerator with the floating point performance 1234 MFLOP/s. The peak 

performance of the single 125 MHz (8xSIMD) EdkDSP accelerator is 2 GFLOP/s. 

 The peak performance of four 125 MHz (8xSIMD) EdkDSP accelerators implemented in this demo 

design is 8 GFLOP/s. 

 

System-on-Module 

  TE0720-02-2I 

(5cm x 4cm)  

 

 

 

 

 

 
Figure 4: Prototype of the EMC

2
-DP Platform w. Imageon FMC board for HDMI I/O and HD video sensor. 

 

The EdkDSP accelerator IP core bce_fp12_1x8_0_axiw_v1_40 performs: 

 Vector floating point operations FPADD, FPSUB in 8 SIMD data paths. 

 Vector floating point MAC operations in 8 SMD data paths for length of the vector 1 up to 10. These 

accelerators can be used in applications like floating point matrix multiplication with row and column 

dimensions <= 10. 

 Floating-point vector-by-vector dot products performed in 8 SIMD data paths. It is optimized for 

parallel computation of up to 8 FIR or LMS filters, each with size up to 255 coefficients. It is also 

effective in case of floating-point matrix-by-matrix multiplications, where one of the dimensions is 

large (in the range from 11 to 255).  
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 Additional HW support of dot product. It is computed in 8 data paths with the HW supported wind-up 

into single scalar result.  

 Support for single data path the pipelined vector floating point division. Accelerators is suitable for 

applications like adaptive recursive (normalised) NLMS filters and the square root free versions of 

adaptive RLS QRD filters and adaptive square root free RLS QRD LATTICE filters. 

 The system clock of ARM Cortex A9 is 666 MHz, MicroBlaze 125 MHz and EdkDSP accelerators 

125 MHz.  

 The EdkDSP floating-point accelerators are reconfigurable during runtime by change of firmware. 

 Asymmetric multiprocessing of ARM Cortex A9 and MicroBlaze system with shared external DDR3. 

 

AMP EdkDSP HW evaluation designs have been compiled in Xilinx VIVADO 2015.2 [5] with SW 

projects for SDK 2015.2 [6]. Presented HW accelerators can results in better POWER per MFLOPS ratio 

for certain class of DSP applications in comparison to the computation on standard CPUs with standard 

HW floating point support. The AMP EdkDSP demonstrator includes source code of set of SW demos 

prepared for easy import of projects and compilation in the Xilinx SDK 2015.2 [6]. 

 

3.2 Resources used by the designs 
 

Figure 5 and Figure 6 present resources used by both designs.  
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Figure 5: AMP design on ZYNQ, ARM A9, MicroBlaze and 1x (8xSIMD) EdkDSP, with FP division 
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Figure 6: AMP designs on ZYNQ, ARM A9, MicroBlaze and 4x (8xSIMD) EdkDSP, with FP division 

3.2.1 Asymmetric multiprocessing and use of external DDR3 memory   

Presented FPGA designs are running on the Trenz electronic TE0720-02-2I System on Module [2] and 

the TE0701-05 carrier board [3]. See Figure 4. It is using the 1GB DDR3 memory with clock signal 533 

MHz. The DDR3 is connected to Xilinx ZYNQ xc7z020-2I FPGA by 32 data path. The first ¾ of the 

DDR3 are reserved for the ARM A9 processor. The last ¼ is used by the MicroBlaze processor with the 

EdkDSP accelerators. The presented AMP demo is extending the Xilinx application note XAPP1093 [1] 

solution from the Xilinx ISE/EDK 14.5 flow to the Xilinx Vivado 2015.2 design flow. See Figure 7 for 

the architecture of the design. 

3.2.2 Re-programmability of EdkDSP accelerators 

Each of the four 125 MHz 8xSIMD EdkDSP floating-point accelerator subsystems contains one 

reprogrammable Xilinx PicoBlaze6 8-bit processor and the floating point 8xSIMD DSP unit. The 

performance of the accelerator is application specific. In this demo, a single 8xSIMD EdkDSP unit is 

delivering sustained 1234 MFLOP/s in case of 2000 tap FIR filter computation and 777 MFLOP/s in case 

of the adaptive 2000 tap LMS filter identification demo. The Xilinx PicoBlaze6 [7] controller has fixed 

configuration with size of the program memory 4096 (18 bit wide) words, 64 Bytes scratch pad RAM 

memory and the interrupt vector in the address 1023. Both PicoBlaze6 program memories are accessible 

by the MicroBlaze processor via AXI-lite bus. The PicoBlaze6 controller can execute program from each 

of these memories. The MicroBlaze application can write new firmware to the currently unused program 
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memory, while the EdkDSP accelerators and their PicoBlaze6 controllers are executing firmware from 

second program memory. 

3.2.3 Debug of the AMP system with EdkDSP accelerators in the evaluation package 

All EdkDSP accelerators can communicate with MicroBlaze program. The communication is using the 

UTIA Worker Abstraction Layer (WAL) library API. This API is also used for support of writing of the 

debug information from the worker to the MicroBlaze terminal. MicroBlaze is using the terminal of the 

ARM A9 processing system, present in the ZYNQ processing system [4]. ARM A9 and MicroBlaze 

communicate via the internal shared memory controller of the ZYNQ processing system [4]. See Figure 

7. 

 

 

 
Figure 7: Simplified architecture of AMP with four EdkDSP accelerators 

ARM and MicroBlaze can be both debugged simultaneously from the SDK 2015.2 GDB debugger 

integrated in the Xilinx SDK tool [6]. PicoBlaze6 controllers [7] can exchange data and text via the 8 bit 

communication data paths and AXI-lite bus with the MicroBlaze processor. This path is used to 
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communicate parameters to the accelerators and to get messages or reports from accelerators for 

debugging.  

 

Floating-point data are accessed by the MicroBlaze processor via the dual ported block memories of 

accelerators. The MicroBlaze sides of the dual-ported accelerator memories are all mapped into the 

MicroBlaze memory space. The MicroBlaze processor can copy data from these dual ported memories to 

its global DDR3 workspace and display floating point data in the debugger.  

 

The computation in the (8xSIMD) EdkDSP units can overlap with communication with the DDR3. It is 

performed by UTIA libwal.a API provided as MicroBlaze library and it is supported by MicroBlaze data 

and program cache. A Ping-Pong swap of memory banks is used. The 8xSIMD EdkDSP firmware 

scheduling the parallel (8xSIMD) computation in some banks of accelerator memories. The MicroBlaze 

program is communicating (sequentially) to/from DDR3 in another set of banks of the dual-ported 

accelerator memories. This process can be stopped, inspected and debugged by the MicroBlaze debugger 

from the SDK debugger [6] in the synchronization functions defined in the UTIA libwal.a API. 

 

3.3 Asymmetric Multiprocessing Demo  
 

 “amp_cpu_1x8_all” project in the “Project Explorer” window of the SDK 2015.2 [6] is used to 

program ARM A9 part of the AMP demo.  

 “edkdsp_fp12_4x8_all” project is used to program the MicroBlaze core and the four EdkDSP 

accelerators of the AMP demo.  

 “edkdsp” project contains libwal.a library for the MicroBlaze processor.  

 “edkdsp_cc” directory contains C source code for the PicoBlaze6 controller firmware and UTIA 

EDKDSP C compiler binary for compilations of C and ASM code [7] for the PicoBlaze6 

controller of the EdkDSP accelerators.  

 The UTIA EDKDSP C compiler can be executed in Win 7 64 bit under the VMware Workstation 

12 Player [19] running in the preconfigured 32bit Linux Ubuntu image (provided by UTIA for 

free) the 32 bit compiler binary application (provided by UTIA for free).   

 

3.4 Performance of ARM A9 NEON and EdkDSP accelerator  
 

The performance of processors and accelerators is dependent on the optimisation level of C compiler for 

ARM and C compiler for MicroBlaze. Lines labled FIR ARM (see Figure 8 and Figure 9) document how 

the ARM performance improves with the Compiler optimization level. Additional substantial 

improvement can be reached only with manual transformation of the C source code for ARM A9 

processor.  

 

FIR MFLOP/s -O0 -O1 -O2 -O3 

FIR ARM (666 MHz) 36 105 120 152 

FIR ARM NEON (666 MHz) 56 351 342 466 

FIR MB EdkDSP (125 MHz) 1234 1234 1234 1234 
 

Figure 8: Measured performance in MFLOP/s for FIR filter computation 
 

LMS MFLOP/s -O0 -O1 -O2 -O3 

LMS  ARM (666 MHz) 42 115 137 150 

LMS ARM NEON (666 MHz) 49 284 277 352 

LMS MB EdkDSP (125 MHz) 777 777 777 777 

LMS MB (125 MHz) 3 7 10 10 

 
Figure 9: Measured performance in MFLOP/s for LMS filter computation 
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This is visible in the lines FIR ARM NEON and LMS ARM NEON. The corresponding functions have 

been reorganized to group together parallel computation of 4 floating point MAC operations in parallel. 

This resulted in better use of the vector capabilities of the NEON unit.  

 

The EdkDSP (8xSIMD) accelerator works with hand optimized code for the FIR and the LMS filter. The 

optimization levels of the MicroBlaze C compiler have impact on the MicroBlaze processor performance 

and only minimal influence on performance of the EdkDSP accelerators.  

 

3.5 Asymmetric Multiprocessing Demo with single EdkDSP accelerator with In-

circuit Logic Analyser 
 

The evaluation design with ARM A9 [4] processor and MicroBlaze processor with single (8xSIMD) 

EdkDSP can be extended by the Vivado In-Circuit Logic Analyzer (ILA). It is part of the free Vivado Lab 

Edition 2015.2 [21].  

 

The implemented precompiled In-Circuit Logic Analyzer (ILA) can store 32k samples of all output 

signals of the (8xSIMD) EdkDSP Accelerator labeled for the debug.  

  

7z020-1 fp32 fp32 fp32 fp32 fp32 Resources (complete PL)   EdkDSP performance 
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S8 
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div 

FF 

% 

Lut 

% 

Bram 

no(of) 

LMS 

Mflop/s 

FIR 

Mflop/s 

fp12_1x8_40 8x 8x 8x 1x 1x 16 37 114(140) 777 1234 
 

 
Figure 10: AMP design with Vivado In-Circuit Logic Analyzer on Zynq 

 

Debug ports provide visibility of the vector (8xSIMD) EdkDSP accelerator. Debug probes help to trace 

the integer addresses and the vector operation schedules. Floating-point data are not displayed. These data 

can be better analyzed in the MicroBlaze debugger [4]. MicroBlaze programs can access all dual-ported 

memories of the of the (8xSIMD) EdkDSP accelerator and copy these data to user-defined arrays declared 

in the DDR3 in the user workspace of the MicroBlaze C application for debug in SDK 2015.2 debugger 

[6]. 

3.5.1 ILA debug ports of the (8xSIMD) EdkDSP accelerator. 

 bce_atoa[0:9]   Memory A address (addressing 1024 32 bit floating point values)    

 bce_atob[0:9]   Memory B address (addressing 1024 32 bit floating point values)    

 bce_atoz[0:9]   Memory Z address (addressing 1024 32 bit floating point values)    

 bce_done[0:7]   Vector operation in progress or finished 

 bce_led4b[0:3]   4bit output, intended for led signalling. Unconnected in the design.   

 bce_mode[0:3]   Mode of communication protocol PicoBlaze6 - MicroBlaze  

 bce_op[0:7]  Vector operation to be performed. 

 bce_port[0:7]   Data on external port. 

 bce_port_id[0:7]  External port address. Address space [0x0 ... 0x1F] are reserved for 

                            internal construction of the WLIW instruction to the 8xSIMD vector 

     processing unit of the EdkDSP. Address space [0x20 ... 0xFF]  

                                      can be used by the user. 

 bce_port_wr  Write strobe related to writing of 8bit data to the external port address 

 bce_r_pb   Reset of the PicoBlaze6 

 bce_we   Write strobe related to writing of a WLIW instruction to the 8xSIMD 

         vector processing unit of the EdkDSP. 

 

These signals can be all used for real-time analysis of the computation inside of the 8xSIMD vector-

processing unit of the EdkDSP. This helps with the debug of the coordination of the PicoBlaze6 firmware 

code, the vector-processing unit together with MicroBlaze code. 
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The ILA triggering combination of probe signals can be initiated and modified from the EdkDSP 

firmware running on the PicoBlaze6 controller. This firmware can be modified SDK 2015.2 editor and 

recompiled by the UTIA EDKDSP C compiler running in [19]. 

 

Selected markers indicate single elementary step of the FIR filter. See Figure 11. It takes 308 clock cycles 

(125 MHz = 8ns clock period) to compute the vector product of two floating-point vectors (coefficients 

and data), both with length 248*8=1984 elements and to update the data vector (circular buffer). The ILA 

HW support provides sufficient level of visibility and debug capabilities for the developer of the 

(8xSIMD) EdkDSP firmware.   

 

 

 

Figure 11: Vivado Lab Edition 2015.2 ILA display of the FIR filter computation 

 

The red trigger is corresponding to the event. We can zoom in the data and define additional markers. 

Selected markers to indicate single elementary step of the LMS filter. It takes 1154 clock cycles (125 

MHz = 8ns clock period) to compute the vector product of two floating point vectors (coefficients and 

data), both with length 248*8=1984 elements, update the data vector (circular buffer), compute the 

prediction error and adapt the coefficients of the LMS filter.  

 

The bce_op[0:7] debug signal is displayed in the analogue/hold mode and indicates the sequence of 

vector operations issued by the PicoBlaze6 firmware, while implementing the single LMS step on single  

(8xSIMD) EdkDSP vector unit. 

 

The ARM code and the MicroBlaze code can be compiled with –O0, … , -O3 optimizations and executed 

under both debuggers in combination with ILA triggering. The –O0 option provides lower performance 

on ARM and MicroBlaze, but the corresponding code includes no transformations. This makes the 

debugging of C code easier. This helps in debugging of the interactions of ARM A9, MicroBlaze and 

EdkDSP accelerator. Complete exchanged blocks of floating point data can be inspected and verified in 

the MicroBlaze GDB debugger in SDK 2015.2 [6]. 
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Figure 12: Vivado Lab Edition 2015.2 ILA display of adaptive LMS filter computation 

 

The EdkDSP accelerator code is deterministic and all operations can be emulated in the MicroBlaze C 

code, including the exact sequence of all floating-point operations. The floating-point unit cores of the 

MicroBlaze for the ADD and MULT provide bit-exact identical results to the floating-point units used in 

the (8xSIMD) EdkDSP vector unit. This determinism secures, that the MicroBlaze code provides bit-

exact identical results to the (8xSIMD) EdkDSP vector unit. This is used for verification of accelerated 

algorithms. 

 

3.6 Conditions for use, downloads 
 

This demonstrator is provided by partner UTIA. 

 The demonstrator includes evaluation versions of AMP designs for ZYNQ. Designs work with 

one ARM Cortex A9 processor, one MicroBlaze processor and four instances of the EdkDSP 

accelerators with 8xSIMD floating point data paths. Evaluation designs are precompiled in 

Vivado 2015.2 [5]. 

 UTIA is providing source code for the EdkDSP AMP demo applications and SW projects for the 

Xilinx SDK Vivado 2015.2 [6]. SW projects are linked with the UTIA library libwal.a serving for 

the EdkDSP communication. 

 The evaluation versions of EdkDSP accelerators have HW limitation of the maximal number of 

performed vector operations. If this limit is reached, board OFF/ON is needed to function again. 

 UTIA EdkDSP C compiler is provided as Ubuntu binary utility (use 64 bit Win 7 WMware 

Workstation 12 Player). 
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 Partners of the Artemis EMC
2
 project can get from UTIA the source code for the HW design 

projects with the evaluation versions of the EdkDSP accelerators in form of AXI-lite netlist 

pcores for free.  

 Release version of AMP designs and the EdkDSP package for the Trenz TE0720-02-2I system on 

module [2] and TE0701-05 carrier board is offered by UTIA. Customers can order and buy from 

UTIA the release version of this AMP demo. It includes the source code of HW design projects 

with the EdkDSP accelerators in form of AXI-lite netlist pcores with no HW limitation of 

maximal number of performed vector operations.  

 

Demonstrator is available for EMC
2
 partners via WP4 section of the redmine repository and public 

information will be accessible for download from http://sp.utia.cz/index.php?ids=projects/emc2.  

 

3.7 Key features of the HDMI demos 

3.7.1 HDMIO 

HDMIO design shows how to interface HDMI output of the TE0701-05 carrier board [3]. See Figure 4 

and Figure 27. It requires a monitor capable of displaying Full HD resolution at 60 frames per second 

(1080p60); this demo works with fixed video signal 1920x1080p60 (pixel clock is 148.5 MHz). Test 

pattern generator TPG generates the output image. The TPG pattern is changeable during the runtime. 

This demo can be executed on Trenz HW [2] and [3] without the FMC IMAGEON card [14]. 

3.7.2 IM-HDMIO 

IM-HDMIO design is almost the same as the HDMIO design but the video signal from TPG is routed 

through FMC IMAGEON [14] HDMI output. The demo allows changing video resolution during the 

runtime thanks to the programmable clock generator on the FMC IMAGEON expansion board [14].  

3.7.3 IM-HDMII-HDMIO 

IM-HDMII-HDMIO is a video pass through design. Video signal originates from FMC IMAGEON [14] 

HDMI input then it is stored in the video frame buffer. Video stream continues from the frame buffer and 

drives the FMC IMAGEON [14] HDMI output. The demo allows changing video resolution during the 

runtime. In case of the resolution of the input video signal is less than the output resolution, it is displayed 

the input video signal plus black margin to fill the required output resolution. In case the resolution of the 

input video signal is greater than the output resolution is required, the output is cropped version of the 

input video signal. 

3.7.4 IM-VITA-HDMIO 

IM-VITA-HDMIO demonstrates interfacing Vita 2000 image sensor [16]. The sensor is connected 

through LCEDI connector on the FMC IMAGEON expansion card [14]. It provides Full HD (1920x1080) 

video signal at 60 frames per second. This video signal is stored in the video frame buffer, after that it 

read from the buffer and displayed on the monitor via FMC IMAGEON HDMI output. 

 

This demonstrator was presented by UTIA together with Sundance and SevenSolutions at the second 

EMC
2
 conference in Vienna 30.9.2015. See Figure 27.  

 

Contact: 

 UTIA AV CR v.v.i.  Jiri Kadlec, kadlec@utia.cas.cz, tel. +420 2 6605 2216 

  

http://sp.utia.cz/index.php?ids=projects/emc2
mailto:kadlec@utia.cas.cz
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4. Dependable and high accuracy time transfer for distributed control 

applications 
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  

 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

Demonstrator presents a new concept for time and frequency dissemination over Ethernet networks. Our 

reference technology is the Precision Time Protocol v2 (PTP, IEEE-1588) modified and renamed as 

White Rabbit (WR). The technology was born at CERN and Seven Solutions is leading its utilization on 

industrial applications and, in the framework of EMC
2
, its use for distributed safety critical applications 

with time or frequency as critical data. WR is the most accurate, flexible and the easiest solution for 

network synchronization over Ethernet. The main features of the WR technology are: 

 Deterministic time transfer  

 Best effort delivery for generic data 

 Sub-nanosecond synchronization accuracy  

 Hardware timestamps 

 It is possible to interconnect thousands of nodes 

 Typical distances of 10km between nodes (can be extended to more than 100km) 

 Ethernet-based Gigabit rate reliable data transfer 

 

More details can be found at: http://www.whiterabbitsolution.com/. Current WR high performance is 

possible thanks to the extension of well-known network standards, such as Synchronous Ethernet (SyncE) 

and PTP. In addition, the combination of them with several mechanisms to compensate link asymmetry, 

as well as monitoring and control clock phase information, form the pillars of this technology. 

 

WR networks are mainly composed of two types of elements forming a tree-hierarchical model. These 

elements are switches and nodes. The demonstrator here described provides the deterministic time and 

frequency transfer capabilities previously mentioned together with redundancy mechanisms to increase 

dependability. These functionalities are developed in the framework of the EMC
2
 project.  

 

4.1 WR demonstrator features & elements 
 

Redundancy, deterministic time distribution capabilities and safety aspects are achieved by the 

combination of several features, where the common notion of time is possible thanks to a very high time 

transfer accuracy that plays a key role. The main properties are:  

 First, WR is used as the main technology to distribute the global time reference for large 

distances in a deterministic and dependable way with sub-nanosecond accuracy. 

 Second, WR nodes produced by Seven Solutions have dual Ethernet interfaces that allow the 

deployment of redundant network topologies and configurations, providing the timing network 

with fault tolerance mechanisms. 

 Third, deterministic features for time distribution are obtained thanks to the inclusion of QoS 

features, highly accurate latency measurements and mechanisms to guarantee packet delivery.  

 Fourth, in contrast to the WR deterministic time dissemination, generic data transfer is performed 

following a best effort delivery approach. 

 Fifth, SevenSolutions WR devices are also capable of disseminating time references using 

different technologies such as PTP, IRIG-B and NMEA, forming a heterogeneous, versatile and 

diverse time provider for Smart Grid. 

 

http://www.whiterabbitsolution.com/
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The distributed control is based on a mechanism to distribute command actions through the network. 

Thanks to the common notion of time, the safe operation of the system relies on providing mechanisms to 

guarantee packet delivery on a bounded period of time. Those features are being developed for EMC
2
.  

   
 

Figure 13: WR-Switch, WR-ZEN (Zynq architecture) and WR-LEN (node based on Artix FPGA).  

 

As previously said, the WR network elements are switches and nodes. For the EMC
2
 project, we will 

focus on the WR-Switch, the WR-ZEN board and the WR-LEN. The WR-Switch has been a key 

component of WR technology composed of 18 SFPs developed as a Virtex-6 FPGA (XC6VLX240T) and 

a 400 MHz ARM processor (Atmel AT91SAM9G45). The WR-ZEN integrates the latest Xilinx Zynq Z-

7015 device with a Dual ARM® Cortex™-A9 and containing an Artix FPGA-logic with 74K logic cells. 

The WR-ZEN has also been designed with an ultra-high stable oscillator and PLLs to provide a 

significant better short-term stability than previous WR boards. An external high-stability oscillator input 

is also available for dealing with situations that require a very high holdover. The combination of the 

hard-core dual processor with the Lattice LM32 soft-core require the utilization of safety-critical design 

techniques such as the ones addresses on WP4 and required by the certification standards like IEC-61508. 

Nevertheless, the focus of Seven Solutions on this project and the goal of this demonstrator are the inter-

chip communication mechanisms here addressed as well as the development of fault tolerance 

mechanisms to avoid single point of failure increasing the dependability of time & frequency transfer in 

Smart Grid networks. 

4.1.1 Time & Frequency Transfer Robustness 

Avoiding single point of failure as single communication links is a necessity to be addressed in safety 

critical applications. Currently, WR robustness is implemented as a Rapid Spanning Tree protocol 

(RSTP) able to reconfigure the network whenever a node is down in the order of 30 ms, however, Seven 

Solutions (7S) is working on the integration of a redundancy protocol to achieve zero-time recovery in 

WR networks. The reference protocol is known as High-availability Seamless Redundancy (HSR, IEC 

62439-3) and guarantees zero-time recovery in case of failure. By including the protocol in WR elements, 

we could extend HSR features to time and frequency distribution in WR ring networks. For this purpose, 

7S is working on a HSR IP-Core that will be included in next-gen nodes to enable HSR configurations to 

guarantee that, in case of failure, both time and frequency will remain synchronized with no loss. 

 

The elements shown in Figure 14 combine WR nodes as WR-LENs, WR-ZENs and the WR switch to 

perform a deterministic time and frequency network using different time protocols (WR-PTP, IRIG-B, 

NMEA, etc.). In order to provide the network with robustness features, part of the time distribution 

network has been configured as a HSR ring able to avoid single point of failure with zero-time recovery. 

It is also possible to group other ring networks by using the WR-ZEN (or WR-Switch) as a Redbox or a 

Quadbox (with proper expansion FMC board). 

  

The target demonstrator combines all these devices to illustrate the time and frequency transfer accuracy 

and the possibility of using different technologies for time distribution as well as the implementation of 

redundancy methods and QoS to meet safety requirements. Moreover, different interfaces such as, PTP, 

IRIG-B, NMEA, 10MHz/PPS are available to ease the interoperability of different type of devices in 

Smart Grid networks. 
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Figure 14: Heterogeneous Time & Frequency Distribution network using White-Rabbit (PTP) and IRIG-B 

 

4.2 Conditions for use, downloads 
 

This demonstrator is provided by Seven Solutions EMC
2 
partner. Concept, publication and reports will be 

available for EMC
2
 partners via EmDesk and public information will be accessible at Seven Solutions 

website: http://www.sevensols.com/index.php. Electronics boards are commercially available and can be 

ordered through the company sales department. For concrete usage conditions and access rights please 

use contact persons info below.  

 

Contact:  

 Seven Solutions S.L Javier Diaz, javier@sevensols.com 

 Seven Solutions S.L Benoit Rat, benoit@sevensols.com 

 Seven Solutions S.L Jos Luis Gutierrez, jlgutierrez@sevensols.com  

 

 

  

http://www.sevensols.com/index.php
mailto:javier@sevensols.com
mailto:benoit@sevensols.com
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5. Automotive domain: Network technologies and connection to testbed  
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  

 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

The goal of the use case T7.3 “Design and validation of next generation hybrid powertrain / E-Drive” is 

the tailoring and further enhancement of the EMC² technologies for the design and validation of next 

generation hybrid powertrains and e-Drives. The validation part draws upon technologies from WP4, to 

implement and study high-performance connectivity between two dissimilar multi-core computation 

systems (e.g. xCU and V&V system). In this use case, following topics (business needs) are addressed: 

 

1. AVL_BN_007: Networking solutions for heterogeneous automotive systems. 

2. AVL_BN_008: Tools and Methods to handle configuration of complex multicore-systems during 

development, calibration and diagnosis 

 

As described in previous deliverables, multicore innovations developed within EMC
2
 are applied to 

implement complex, networked, powerful control units and systems thereof, for the next generation cars, 

trucks, farming vehicles. 

 

However, such smart functionalities require sophisticated tools for testing (i.e. verification and validation, 

V&V) like 

  

 Detailed, real-time simulation of driver, components, subsystems, environment, … 

 Communication (IVN, V2x, …) 

 Closed loop control with high dynamics 

 Instrumentation & measurement systems 

 Automation of testing 

 Model-based exploration, optimization, testing 

 Online processing and validation of results  

 Deal future with variability and complexity 

 Safety 

 

Similar to the units under test (xCU’s), the V&V system itself will be a high-performance, dependable 

computation platform, based on modern multi-core architecture. However, as significantly more memory, 

performance, throughput etc. are required, these platforms use typically industry standard x86/x84 

platforms, with 8 and more cores in parallel. 

 

Therefore, the V&V system will have to support 

 Highly scale-able and configure-able systems  adapt-able 

 Multiple applications based on (standardized and specific) SW components 

 Providing real-time execution with typical cycle rates of 50us and above 

 Based on COTS platform: the industry PC (multicore x86/x64) 

 Allow (automatic) partitioning and thus parallelization of applications 
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Figure 15: Overview of Blocks 

 

In order to execute testing, a highly performant, dependable, deterministic communication link between 

UUT and V&V system is required. 

It must support standard IVN (in-vehicle network) implementations, i.e. 

 CAN 

 CAN-FD and/or 

 Automotive Ethernet 

 

New approaches are taken to manage e.g. consistency, variability, authenticity of data and its structure in 

such a highly parallelized system within the constraints of a vehicle’s hardware.  

 

This demonstrator will show solutions for configuration, management, communication, verification, and 

the required hardware connectivity for performant data exchange for the described scenarios. 

 

Multiple tasks running on multicore xCU’s will be enabled to communicate with multiple tasks executing 

on V&V systems. This is implemented via unified high-performance, low latency real-time networks  

  

In phase 1, requirement engineering, concept design and base architecture has been developed. In phase 2, 

a first version of the demonstrator with a high performance test application interfacing to one or more of 

the multi-core xCU’s developed by partners shall be shown, see Figure 16: . In the third phase, a second 

iteration of the system shall allow to demonstrate the full potential of the technology. 

 

 
Figure 16: Overview of V&V aspect of the use case 

 

This demonstrator will therefore allow showing and analyzing efficient validation of next generation 

hybrid powertrain / E-Drive systems in combination with powerful multi-core based real-time test & 

simulation tools via multiple logical connections / streams through high-performance automotive 

networks.  

 

5.1 Description, parameters, photos, diagrams 
 

The demonstrator is based on the following basic layout. See Figure 17  (note: several alternatives for the 

RTOS on XCU side shall be investigated)  
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Figure 17: Overview of V&V aspect of the use case 

 

The demonstrator  will be implemented as part of an automotive test bed (e.g. vehicle or engine based, see 

Figure 18 and    Figure 19). 

 

  
 
Figure 18: Vehicle Test Bed     Figure 19: Engine Test Bed 

 

5.2 Conditions for use, downloads 
 

This demonstrator is provided by partners AVL/GRZ, EB, IFAG. 

Concept, publication and reports will be made available for EMC
2
 partners via EmDesk. 

 

Contact:  

 AVL/GRZ, Eric Armengaud, eric.armengaud@avl.com;  

  

  

 

mailto:eric.armengaud@avl.com
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6. Time-triggered Multi-processor System-on-Chip Architecture for Cross-

domain applications  
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  
 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

In the Artemis JU project ACROSS, a novel Multi-Processor Systems-on-Chip (MPSoC) was developed. 

The ARTEMIS architecture is targeted for cross broad cross industrial domain application, provide open 

certifiability in different industrial domains and support highest safety-critical applications (strict space 

and time partitioning and separation of cores on the MPSoC). The architecture was designed according to 

service-oriented architecture (SoA) principles devised in project GENESYS. It comprises a set of 

platform specific services essential for the functionality of a system, a set of optional services, which are 

available on demand, and a set of domain (application) specific services, which vary depending on a 

domain or an application.  

 

The ACROSS architecture provides capability of integrating multiple heterogeneous cores on a single-

chip. It is capable of integrating safety-critical and non-critical applications within a single system. The 

benefits of this novel architecture are energy and area efficiency, computational performance, 

heterogeneity, reduction of physical components, certifiability due to Network on the Chip (NOC), 

separation of cores via Trusted Interface Subsystem approach (TISS).  

 

6.1 Legacy MPSoC 
 

The ACROSS MPSoC [1] provides an alternative to the classical MPSoC approach and it can be 

observed rather as a networked multicomputer than classical multicore based SoC.  

 

The core of the ACROSS MPSoC is a deterministic interconnect called time-triggered network-on-chip 

(TTNoC). It allows deterministic connection of several independent computational units, called Micro 

Components (µComponent). Each µComponent is connected to the rest of the system via message based 

linking interface, which provides deterministic behaviour both in value and time domain. The 

µComponent can be observed as an independent computer with private basic resources (e.g. memory, IO). 

 

The ACROSS MPSoC provides eight µComponents (the number of cores could be extended by enlarging 

the fragment switch section). Four cores are used by the system itself to provide basic services (Trusted 

resource manager, I/O, diagnosis, storage component) and four cores were reserved for applications. All 

eight components contain a set of common hardware modules:  

 Nios II Core  

 RAM 

 Boot ROM 

 TISS Interface 

 Port Memory 

 JTAG 

 Local Timers 

 

6.2 EMC
2
 TTNoC Many-core Architecture on Altera Arria V 

 

In the recent years a relatively novel concept in embedded hardware was introduced, it combines an 

FPGA fabric with a hardcoded CPU on a single chip. This concept provides embedded developers with a 

platform that has performance capabilities of the hardcoded processor and flexibility of the FPGA. This 
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allows developers to implement a wider spectrum of applications on a single chip. Combination of 

applications with different performance, safety and security requirements on a single chip is one of the 

major objectives in cyber-physical systems. A goal of the EMC
2
 project is to explore novel hardware 

architectures and their capabilities to provide deterministic multi-core environment for safety critical 

applications. TUW is working on an adaptation of ACROSS TTNoC, and implementation of an MPSoC 

on top of it using one of these new hybrid hardware platforms. The platform chosen for this project is 

Altera Arria V ST. It combines Arria V FPGA with an ARM Cortex A9 processor (see Figure 20). This 

new hybrid architecture provides developers with the performance capability of a multicore hardcoded 

CPU and flexibility of the FPGA.  

 

The activities of TUW in the WP4 consider porting VHDL components to the latest toolchain and 

technology, designing new µComponents tailored to the new platform, integrating ARM core in the 

TTNoC driven MPSoC. This work is mainly done in the Task 4.3, and the demonstration of the same is 

done in Task 4.6 and WP9.  

 

New time-triggered MPSoC (see Figure 21) will have four to six µComponents implemented on Nios2 

architecture and one ARM based component. The new soft-coded µComponents are generic and they 

could be adapted to specific requirements if necessary, additional memory requirements and IO 

requirements could be assigned on a specific need of an application. This excludes components build to 

serve as system components for the TTNoC called Trusted Resource Manager. The setup of ARM 

component is extendible by interfacing it directly with additional IO resources using FPGA fabric. The 

second option is to use the TTNoC and one of the FPGA µComponents as a gateway. This would be a 

reconfigurable solution without changing hardware structure of the SoC, the legacy ACROSS platform 

provided a dedicated component as IO gateway. The ARM components disposes with a much higher 

performance capabilities compared to the Nios 2 components.  

 

Each component of the MPSoC is completely isolated unit in time and space. It uses static scheduling for 

the time-triggered communication between the cores. This allows full mixed-criticality integration for any 

application on single-chip. The TTNoC allows both deterministic communication as well as task 

triggering, in coherence with the global time. The design of the architecture also follows principles of a 

service-oriented development. The work on this subject is performed in WP1 and although this 

architecture is not directly built on the findings in WP1, but service-oriented approach used in ACROSS 

MPSoC, it can still be used to evaluate certain concepts developed in that work package.  

 

 
Figure 20 Arria V SoC Development Board and Block Diagram of the Architecture 

 

The demonstration of the MPSoC is planned in Living Lab 9 (WP9) in a space use case. The goal is to 

use the many-core structure with isolation properties and explore different methods for fault tolerance 
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used in space-oriented architectures. Further, new capabilities with regard to performance will be 

investigated, by exploring an emerging behaviors gained by integrating ARM processor in the 

architecture. TUW is in contact with additional partners from both scientific and industrial sectors to 

establish further demonstration activities of the MPSoC.  

 

 
 

Figure 21: EMC
2
 TTNoC MPSoC Architecture 

 

6.3 Conditions for use, downloads 
 

This demonstrator is provided by TUW, with support of TTTech. Who are owners of intellectual rights 

for certain IP modules in the architecture (e.g., TTNoC). For the support in integration and usage the 

contact person is Haris Isakovic (email: haris@vmars.tuwien.ac.at ) from TUW, for further information 

acquiring rights to specific components the contact person is Andreas Eckel (email: 

andreas.eckel@tttech.com) from TTTech. 
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7. Enhanced Automotive Time-of-Flight Demonstrator 
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  
 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

7.1 Introduction 
 

Time-of-Flight depth sensing is a dynamic and fast-paced field of research that achieved decent advances 

recently. Thanks to the Time-of-Flight’s monocular principle, a robust and cost-efficient 3D sensing 

technology is given. However, depending on the target use-case, resource requirements can be significant 

for performing Time-of-Flight 3D image processing. 

In deliverable D4.15 an automotive Time-of-Flight demonstrator is introduced, which is focusing 

particularly on mixed-critical application domains, such as safety-critical automotive applications.  

Thanks to the exploitation of optimization potentials, a resource- and performance-efficient 

implementation is achieved that fits into the resource-constrained AURIX platform: depth and amplitude 

data is provided with 80 FPS, while requiring only little memory and no dedicated hardware accelerators. 

However, if depth data accuracy is required to be higher, then the complexity of Time-of-Flight data 

processing increases.  

The enhanced automotive demonstrator, which is presented in this deliverable, outsources parts of the 

Time-of-Flight data processing from the AURIX into an FPGA. Therefore, computation load and memory 

requirements of the AURIX platform are drastically reduced and are available for other tasks. 

 

7.2 Description, parameters, photos, diagrams 
 

Figure 22 depicts the design of the enhanced Time-of-Flight 3D sensing demonstrator, which is focused 

on mixed-critical application domains. The presented approach consists of the Time-of-Flight camera 

system, an FPGA, and the AURIX TC299 automotive computation platform. The Time-of-Flight camera 

system provides raw data. This raw data is provided to the FPGA, which implements the Time-of-Flight 

specific processing algorithms in hardware. Thus, the computations are performed hardware accelerated 

and with only little delay. The resulting depth data is then provided to the AURIX platform through its 

camera interface. The depth data is then pushed into, e.g., CPU 1’s local scratchpad. There, the use-case 

specific application software is implemented. Finally, CPU 1 provides the use-case specific events and 

the depth data to other processor cores, e.g., for more sophisticated vision analysis. Given this system-

concept, the computation load and memory requirements of the AURIX platform are drastically reduced.  

 

 

Figure 22: Concept of the enhanced automotive Time-of-Flight demonstrator 
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Figure 23 illustrates the basic data path of the hardware accelerated Time-of-Flight pre-processing. The 

Time-of-Flight raw data is pushed into the FPGA module’s DDR memory. The Time-of-Flight processor 

then accesses this data and computes the depth data hardware accelerated. Finally, the depth data is 

provided to the AURIX through its camera interface.  

 

 
 

Figure 23: Data path of the hardware accelerated Time-of-Flight processing platform 

 

During the course of the EMC
2
 project, it is aimed to realize a Time-of-Flight co-processor that provides 

depth data with improved accuracy. In order to achieve high depth accuracy, a sequence of processing 

steps need to implemented within the co-processor:  

 First, phase data is computed based on the retrieved Time-of-Flight raw data of the sampling 

points A0, A1, A2, and A3 through an atan operation.  

 Then, systematic errors of the Time-of-Flight principle (such as wiggling error or fixed pattern 

noise) are corrected with the help of previously determined calibration data. Note, the more 

precise the calibration task was performed beforehand, the more accurate is the corrected 3D data 

of the system.  

 As a next step, the depth information is calculated based on the phase data.  

 If the Time-of-Flight system uses more than one modulation frequency, then an unambiguous 

range extension is carried out in order to increase the system’s maximum range.  

 After that, the gray-scale amplitude data is calculated with the help of a square-root operation. 

 Next, analyses and filters are applied to further optimize the data quality.  

 Finally, a Cartesian coordinate transformation can be applied in order to provide 3D point cloud 

data (x, y, and z values). 

 

7.3 Conditions for use, downloads 
 

This demonstrator is provided by partner IFAT.  

 

For re-use or download please contact one of the following persons. 

 

Contacts:  

 IFAT, Thomas Herndl, thomas.herndl@infineon.com , tel. +43 (5) 1777 11572 

 IFAT, Norbert Druml, norbert.druml@infineon.com , tel. +43 (5) 1777 5155 

 

  

mailto:thomas.herndl@infineon.com
mailto:norbert.druml@infineon.com
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8. Fine Grain Partially Reconfigurable Array of Processors on Zynq with 

Linux reprogramming support 
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  

 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   

 

This is a demonstrator built for Situational Awareness Partial Reconfiguration support.  A typical 

application area is in Automotive Driver Assist, where the mixed criticality safety features are chosen 

based on real-time GPS, traffic type, roadwork and weather information.  The required safety feature set 

implemented in FPGA firmware is supported by partial reconfiguration of the FPGA whilst maintaining a 

base set of safety related acceleration support.  A User Space application running in Linux can request a 

partial reconfiguration through a Device Driver that will in-turn reconfigure the array processing 

subsystem.  The reconfiguration is designed to minimize the number of NOPs in VLIW instructions for 

the required safety features, thereby maximizing efficiency and minimizing power. 

 

8.1 Description, parameters, photos, diagrams 
 

The demonstration system will be a variation of EnSilica’s Zynq eSi-Module and carrier board.  The 

carrier board will allow interfacing to GPS, a Radar board, Ethernet for internet access, etc. 

 

 
Figure 24: Photo of demonstrator carrier board and module 

 

So far, we have been profiling ADAS signal processing IP components - FFT, CFAR, Kalman Filter to 

determine the possible levels of redundancy and re-use that can be afforded in ADAS applications that 

cover long range RADAR (LRR) and short range RADAR (SRR).  The intent is to determine a universal 

RADAR platform that meets the diverse needs of both LRR and SRR and can be switched between the 

two application areas whilst maintaining sufficient redundancy to meet safety critical requirements.  The 

research has looked at partial reconfiguration of the FPGA fabric to deliver that redundancy in time 

during the switch between LRR and SRR. 

 

Next steps are to connect up an actual RADAR transceiver board and examine the real time processing 

requirements and the control of these from the application layer code. 

 

8.2 Conditions for use, downloads 
 

This demonstrator is provided by partner ENSILICA 

 

Contact: ENSILICA, Contact person, david.wheeler@ensilica.com,  tel: +44 118 321 7332  

  

mailto:david.wheeler@ensilica.com
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9. HDMI-in video processing to HDMI-out controlled by Ethernet port 
 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  
 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

Sundance has developed the EMC
2
-DP, a PCIe/104 OneBank™ board with a Zynq™ dual ARM9 CPU, a 

re-configurable FPGA Logic and an interface to CPU specific I/O features. The dual ARM processor 

cores have direct access to the DDR3 memory that provides 1GByte of storage.  

The EMC
2
-DP can be used as either a Host Controller in a PC/104 Stack or as stand-alone as it is the case 

in this demonstration. 

 

Demonstrator 8 is presenting the EMC
2
 Development Platform controlled by a Graphical User Interface 

host application over an Ethernet connection for live video. The Ethernet interface is made available on 

the SEIC. 

 

The purpose of this demo is to allow real-life data, in this case a video-stream from a HDMI Output to be 

loaded into the Zynq’s memory, controlled by a CPU (in this example an Xilinx 32-bit MicroBlaze CPU) 

and then displayed again on a second HDMI-Input device (typical a Monitor). The platform will allow 

real-time manipulation of the image, using either a number of CPUs or the FPGA fabric. There is no 

attempt in this demo to provide such features.  
 

9.1 Description, photos, diagrams 
 

In this demonstration, a VITA57.1 FMC
®
 compatible Daughter Cards is plugged to the EMC

2
-DP to 

provide HDMI input/output capabilities. The input video is stored to DDR3 memory and the output video 

is read from DDR3 memory. A MicroBlaze 32-bit soft-core processor is implemented in the Zynq PL to 

control the HDMI interface to have access to the DDR3 memory and the video data for processing. See 

Figure 28.   

 

FIFOs are used to buffer the HDMI input and HDMI output to sustain HDMI rate. The HDMI output runs 

at the same time as the HDMI input with the same control signals delayed. The input and output HDMI 

rate are identical.  

 

The memory read and write are alternated to provide data for HDMI output while storing the HDMI input 

data. The memory read is performed ahead of the memory write. 

 

The GUI host application controls the EMC
2
-DP via the 1GB Ethernet port using a write/read API. See  

Figure 25. 

 

The Ethernet link is used to communicate with the ARM processor core running Linux that, in turn, 

communicates with the MicroBlaze processor to configure the system and drive its memory accesses 

remotely. 
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Figure 25: Screen-shot of control console 

 

The host application can also provide any data to write to memory to be processed and then read it back. 

For example, it can load a picture to display on the HDMI output and read a picture captured on the 

HDMI input.  

A UDP server runs in Linux on the PS and the host application runs the UDP client. The MicroBlaze will 

perform the read and write operations requested by the host. The EMC
2
-DP boots from SD card so the 

application code would run at power up and could be used to configure the system from Ethernet.  

 
From the graphic interface, the control commands can be sent manually. But more efficiently, the host 

application can load a set of commands from an xml file and send it to the system. Typically, a set of 

commands will be:  

 

 Read from memory (with the option to display data in the GUI and/ or save it to a file),  

 write to memory (the data can be manually entered or come from a file),  

 sleep,  

 synchronize (the host application is waiting on an event from the SMT166 to be signaled before 

doing the required operation)   

 

An XML command file can also be created or modified from the graphic interface.  

 

The use of XML files facilitates the system configuration but also makes it easier and quicker to repeat 

operations like running full system tests. Therefore, the system is very flexible and can be controlled 

remotely using the Ethernet port.  

 

The GUI host application has been developed in C++ in the QT5 [5] software environment to make the 

deployment to other platforms possible. The current application runs on Windows 8.  
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Figure 26: Diagram describing the Sundance demonstrator  

 

The firmware for the EMC
2
 Zynq is developed using Vivado 2015.2. Xilinx SDK was used to develop the 

ARM software. Petalinux is running on the ARM. 

 

9.2 Conditions for use, downloads 
 

This demonstrator (see Figure 28) is currently in a final stage of development and is going onto a 

“Remote Log-On” site within Sundance’s office in England. Anybody will then be able to log-on and get 

access to the EMC
2
-DP and the demo.  All the sources are available on the PC that controls the EMC

2
-

DP, as is a copy of the required tools.  

 

Contact: Sundance Multiprocessor Technology ltd., Emilie Wheatley, emilie.w@sundance.com  
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Figure 27: Common WP4 demonstration at the EMC

2
 conference Wienna 30.9.2015  

 

 
 

Figure 28: Sundance EMC
2
-DP board with the HDM-IN HDMI-OUT application demo 

 

Figure 27 is presenting results of the WP4 collaboration and development lead by Sundance, 

SevenSolution and UTIA at the second EMC
2
 conference 30.9.2015 in Vienna.   
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10. Demonstrator platform for multicore avionic systems 

Technology lanes covered: 

 Heterogeneous Multiprocessor SoC architectures  

 Dynamic reconfiguration on HW accelerators  

            and reconfigurable logic 

 Networking  

 Virtualization and verification technologies   
 

10.1 Description of the architecture 
 

POLITO developed a proof-of-concept (PoC) demonstrator based on input coming from the Avionic 

Living Lab (WP8). The main goal of the PoC is the consolidation of two different applications with 

different levels of criticality on the same multi-core processor, where the main concern is the availability 

of a safety critical application.  In order to grant application isolation, we used a type-1 hypervisor (HV): 

each application runs in its own partition; as such it has its own virtual memory space and its own channel 

to access peripherals; the HV guarantees isolation: it detects and stops any attempt of one application 

running in its own partition to access resources belonging to another partition. The architecture is 

presented in Figure 29 the proposed architecture foresees the availability of a dual core processor, a 

System Watchdog Timer (SWDT), responsible for resetting the whole chip in case it becomes 

unresponsive, and two Watchdogs (WDs) responsible for detecting applications control flow errors 

(CFEs). The target system is a SoPC, and the programmable logic available in the system has been used 

to implement the WDs, which were custom designed. 

 

 
 

Figure 29: Proposed Architecture 

 

As far as the software architecture is considered, the HV allows to: 

 Isolate the applications by guaranteeing that an application can access only its resources. The 

memory, I/O, and computing resources available in the target hardware are partitioned by the 

designer, and allocated statically to each application, which owns the resources exclusively. 

 Provide support for restarting any partition that lead to WD expiration. 

 

The software architecture is composed of three partitions: 

1. A critical partition (CP) containing the critical application (CA).  

2. A non-critical partition (NCP) containing the non-critical application (NCA).  

3. A system partition (SP) in charge of performing recovery actions (RAs).  

 

The cooperation of the three partitions among themselves and with the hardware is depicted in Figure 30. 

The HV is in charge of loading the images of the two applications and of instantiating the partitions. Once 

the system is up each application is responsible for configuring and enabling its own WD. The critical 

application is responsible for refreshing the SWDT, which in case of expiration resets the SoPC. The 
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SWDT is responsible for recovering from faults preventing the execution of recovery actions, e.g. single 

event functional interruptions (SEFIs). The non-critical application shall never interfere with the critical 

application, therefore only the latter can refresh the SWDT, i.e. the multicore processor is restarted only 

when a fault leads to halting the critical application. 

 

WDs are used to detect CFEs; each application partition has a dedicated WD. In our architecture the 

application software is partitioned in a number of chunks, each associated with a keyword. The chunks 

are executed sequentially and therefore the WD expects to receive the keywords according to a predefined 

sequence. The WD stores the keywords the designer defined in its own registers; the number of keywords 

in the sequence to be monitored by the WD is also stored in a register. WDs implementation is application 

independent: the configuration phase, in which the expected sequence is loaded in each WD, can be 

performed either at FPGA configuration time or via software at bootstrap. Moreover, the number of 

keywords in the sequence is not bounded to be the same as the WD registers used to store the signatures, 

meaning that the number of such registers is merely an upper bound, and one that can be modified by 

slightly changing WD’s HDL description. Moreover the time between one signature and the following 

one is configurable and is controlled by a timer. The timer is automatically reinitialized with the value 

stored in a specific register each time a correct keyword is received. The application is responsible for 

sending the keyword of the chunk it is executing to its own WD. Each WD triggers a dedicated interrupt 

if: 

 It has not been enabled and the software sends a keyword; 

 It has been enabled and the software performs any operation on it except sending a keyword; 

 It receives a keyword different from the expected one; 

Each of the listed conditions corresponds to a control flow error or a data error. 

 

 
Figure 30: Messages exchanged among architecture components 

 

In general, the architecture implements multiple levels of checks. First, the HV ensures that reserved 

resources are not improperly used by the applications running on the computer. This is mainly 

implemented through a separation mechanism, which depends on the HV implementation, and through a 

time partitioning scheduler. The latter grants that the tasks composing each application are allowed the 

proper time to execute, which is determined by the designer through a worst-case execution time analysis. 

In case one of these two mechanisms fails, the WDs can detect the problem and allow for a fast recovery 

action, which is application dependent. In case WDs are not able to detect or in case the system is in such 

a state that a fast recovery action is not possible, the SWDT is able to detect the situation and triggers a 

secondary recovery action. Recovery actions are dependent on the application. In avionics applications, 

requiring a very high availability, the recovery action is often implemented through the use of an hot-

standby spare computer: when a fault is detected in a computer, its hot-standby spare is activated. The 

crew is warned of such event, and the proper maintenance actions are taken in a timely fashion. The 

attentive reader may have noticed that the proposed architecture does not allow to avoid the use of spare 

computers, however it does allow to reduce the number of computers needed by the avionics, allowing to 

implement two applications on a single computer. 
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10.2 Description of the demonstrator 
 

The proposed architecture has been implemented targeting the Zynq System-on-Programmable Chip 

(SoPC), and in particular two versions of the PoC has been developed: 

 Virtual prototype of the PoC: this version leverages the Mentor Graphics VISTA environment to 

build a virtual prototype of the PoC where an instruction-set simulator is used to model the 

Cortex A9MP processor embedded in the Zynq device and System C is used to model the 

watchdog architecture we developed. Using the VISTA simulator features, a set of fault injection 

scripts have been developed. 

 Physical prototype of the PoC: we modeled the watchdog architecture we devised using the 

VHDL language, and we synthesized the proposed architecture on a ZED board. A laptop is 

connected to the ZED board via serial cable, as well as via Lauterbach TRACE32 debugger for 

I/O and fault injection purposes. 

 

Two versions of the proposed software architecture have been developed based on two different 

virtualization platforms: SysGo PikeOS and Mentor Graphics Nucleus secure. 

Two applications stemming from the avionic living lab have been integrated on the proposed HW/SW 

architecture. 
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11. Conclusions 

Presented enhanced demonstration platforms including basic innovative techniques overview helps to 

initiate and implement concrete bottom-up collaborations within WP4 and collaborations with the LL 

partners of the EMC
2
 project. 

 

WP4 team will actively promote this early collection of demonstrators within the EMC
2
 through the 

internal collaborative pages. Several demonstrators have been presented at EMC
2
 project conference 28-

30.9.2015 in Vienna and discussed at the conference. See Figure 27. 
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