
Profile Driven Application Parallelization
Imran Ashraf, Nader Khammassi, Koen Bertels

Computer Engineering Lab, TU Delft, The Netherlands
Email: {I.Ashraf, N.Khammassi, K.L.M.Bertels}@TUDelft.nl

Abstract—The growing demand of processing power is being
satisfied mainly by various forms of parallelism in the computing
system. Efficient application parallelization to make use of the
available parallelism in the architecture, is still an open issue. In
this paper, we present a parallelizing framework based mainly on
two complementary tools, MCROF and XPU to provide an alterna-
tive development path to parallelise applications. This framework
addresses the challenges of identifying potential parallelism and
exploiting it in a different way. The MCROF tool provides a
detailed application profile helping in extracting parallelism in
a sequential application and the XPU programming paradigm
provides an intuitive and simple interface to express parallelism
as well as the necessary runtime support. The framework takes a
sequential application, generates the required static and dynamic
information and utilizes this infomration to automatically gener-
ate the parallel representation of the application. We demonstrate
through a use case that our framework is able to extract various
forms of fine and coarse grained parallelism.

Keywords—Memory profiling, dependence analysis, program
parallelization.

I. INTRODUCTION

The number of transistors per chip is growing due to
technology scaling and increasing the clock rate of processors
is becoming technologically less viable [1]. The current trend
is therefore to integrate a growing number of processing cores
on chip, forcing parallelizing compilers to mature rapidly and
to provide efficient code for the multi-core processors.

Despite decades of research and development of paralleliz-
ing compilers, automatic parallelization of sequential code
using a compiler is standing as the holy grail of parallel com-
puting and has had a limited success. Utilization of tool-chains
which assist the programmer by full or partial automation
of various parallelization phases presents a better alternative
which can offer better performance-productivity trade off.

In this work, we present a framework based on MCROF
and XPU tools to help programmers extract and express
parallelization. The MCROF tool provides a detailed profile of
the data flowing inside an application and the XPU program-
ming paradigm provides an intuitive and simple interface to
express parallelism as well as the necessary runtime support.
The framework automates the process of extracting various
forms of parallelism in sequential applications. The frame-
work takes a sequential application, generates the required
static and dynamic information and utilizes this information
to automatically generate the parallel representation of the
application. We demonstrate the working of framework by a
case study to highlight the information generated by various
tools involved in the developed framework. We also discuss

that our framework is able to extract various forms of fine and
coarse grained parallelism.

Rest of the paper is organized as follows. Section II dis-
cusses some of the available parallelizing compiler frame-
works. Section III introduces the parallelizing framework
followed by Section IV describing the use of the proposed
framework. Experimental results are provided in Section V.
Finally Section VI concludes this work.

II. RELATED WORK

Though static-analysis tools [2] can also track data-
communication, a large number of tools [3], [4] utilize
dynamic-analysis to collect producer-consumer relationship
at runtime. These tools have high run-time overhead, which
limits their use for realistic workloads affecting the quality
of the generated information. Furthermore, the provided in-
formation lacks necessary dynamic details and is not linked
to the source code, making it hard to utilize this information.
A number of automatic parallelization compilers exist such
as Par4All [5], Cetus [6], Parallware [7], Polaris [8] or
PolyCC/PLUTO [9] which are source to source compilers that
can produce parallel code after analyzing the sequential code
using different parallelization techniques. The Intel ICC [10] is
a popular compiler which provides an automatic parallelization
feature which allows both instruction-level and thread-level
parallelization of sequential regions of the input code.

Automatic parallelization of sequential code has had limited
success [11]. Great advances have been made in automatic
parallelism extraction at the instruction level, however, in order
to exploit efficiently modern multicore platforms, compilers
need to capture parallelism also at thread-level which is a
challenging task. Pareon by Vector Fabrics [12] is an example
of a tool, which assists the programmer and guides the
parallelization process instead of performing automatic code
parallelization.

III. MCPROF-XPU PARALLELIZING FRAMEWORK

This section briefly presents the MCROF-XPU parallelizing
framework. Figure 1 presents an overview of the framework.

A. ROSE Compiler

ROSE [13] is an open-source, object-oriented compiler
infrastructure facilitating ease of building tools for analysis
and transformation of programs in various languages including
C/C++. We have used ROSE for the following tasks.
1) Inserting markers in the source-code to mark loop bound-

ries.

Fig. 1. MCROF-XPU Parallelizing Framework.

2) Outlining loops to consider them as separate functions.
3) Generating source location information like starting and

ending position of loops, variable names etc.

B. MCPROF

MCROF [14] is a runtime memory and communication
profiler which generates detailed application profile in terms of
memory access based on Intel Pin Dynamic Binary Instrumen-
tation (DBI) framework [15]. MCROF performs instruction-
level instrumentation to track memory reads and writes by
each instruction. Furthermore, routine-level instrumentation
is utilized to keep track of the currently executing func-
tion. These are tracked by maintaining a call-stack of the
functions executing in the application. To track the dynamic
allocations in the application, image-level instrumentation is
utilized to selectively instrument library images for memory
(re)allocation/free routines.

The tracked memory reads/writes are associated with parts
of the source code depending upon the selected granularity i.e.
functions, loops or other marked regions in the source code.
In this way, a producer-consumer relationship is established
between functions/loop/objects in the source code and reported
in the form of a communication graph. In this work we
extended MCROF to generate the following information:
- Runtime callgraph to show the loop nests as well in the
callgraph. This is important for function splitting at the
coarser granularity of loop nests.

- Coarse-grained dependence information, for instance, depen-
dence between functions and loop nests.

- Fine-grained dependence information, for instance, depen-
dence among loop iterations.

C. MXIF Generator

This block takes static and dynamic information generated
by various tools to generate parallel application. In order to
help programmers easily apply the parallelization manually, or
help a tool automatically generate the parallel application, we
generate a representation of the parallel application in MCROF-
XPU Interchage Format (MXIF).

D. XPU Code Generator

This block takes sequential application and the represen-
tation of parallel application in MXIF to generate parallel
application with XPU code. The generated parallel code can
then be compiled with ordinary compiler, for instance g++ to
generate the executable.

XPU [16] is a structured parallel programming framework
which aims to easily express and exploit parallelism. XPU
allows the expression of different types of parallelism at
different levels of granularity. Supported parallelism types in-
cludes data parallelism [17], task parallelism [18] and pipeline
parallelism [19]. These different parallelism types can be
composed hierarchically in the same application [20].

XPU utilizes C++ meta-programming techniques [21][22]
exploiting the potential of the standard C++ language and
thus does not require any particular tool except standard
C++ compiler. XPU provides a friendly and light weight pro-
gramming interface which enables the programmer to design
parallel applications or parallelize sequential applications with
minimal code changes without any significant alteration.

IV. CASE-STUDY

1 void addsub(float* sum, float* diff, float* in1, float* in2
, int N)

2 {
3 for (int i=0; i<N; i++)
4 sum[i] = in1[i] + in2[i];
5

6 for (i=0; i<N; i++)
7 diff[i] = in1[i] - in2[i];
8 }
9 void muldiv(float* prod, float* qout, float* in1, float*

in2, int N)
10 {
11 for (int i=0; i<N; i++)
12 prod[i] = in1[i] * in2[i];
13

14 for (int i=0; i<N; i++)
15 qout[i] = in1[i] / in2[i];
16 }
17 int main(int argc, char **argv)
18 {
19 int i, N = 5000;
20 /* allocation of a,b,c,d,e and f */
21

22 for (i=0; i<N; i++){
23 e[i] = i+1.7;
24 f[i] = i+1.7;
25 }
26 addsub(a,b,e,f,N);
27 muldiv(c,d,e,f,N);
28

29 /* de-allocation of a,b,c,d,e and f */
30 }

Listing 1. Example Sequential Application.

The focus of this case-study is to show various intermediate
steps taken by the parallelizing framework to parallelize a
sequential application presented in Listing (1) and show the
information generated by various tools in the framework.
Though this is a simple application, it contains various forms
of parallelisms:
- Coarse-grained: Function calls at Lines 26-27 can be exe-
cuted in parallel.

- Coarse-grained: Both loops in function addsub can be
executed in parallel to each other.

sequential main_0_1
parallel_for main_15_2_pf

task main_15_2
parallel dummy_par_3

parallel addsub_23_3
parallel_for addsub_7_4_pf

task addsub_7_4
parallel_for addsub_9_5_pf

task addsub_9_5
parallel muldiv_24_6

parallel_for muldiv_11_7_pf
task muldiv_11_7

parallel_for muldiv_13_8_pf
task muldiv_13_8

Fig. 2. Simplified representation of parallel application.

- Coarse-grained: Both loops in function muldiv can be
executed in parallel to each other.

- Fine-grained: Iterations of all the for loops can be executed
in parallel.

1 (task_graph dummy_par_3
2 (parallel
3 (task_graph addsub_23_3)
4 (task_graph muldiv_24_6)
5)
6)
7 (task_graph addsub_23_3
8 (parallel
9 (task_graph addsub_7_4_pf)

10 (task_graph addsub_9_5_pf)
11)
12)
13 (task_graph addsub_7_4_pf
14 (parallel_for
15 (task addsub_7_4)
16)
17)
18 (task addsub_7_4
19 (mapping_of
20 (chunk_of addsub_7
21 (function addsub
22 (file "test.c")
23 (lines 5 22)
24)
25 (lines 9 13)
26 (input sum " float * ")
27 (input in1 " float * ")
28 (input in2 " float * ")
29 (input N " int ")
30 (input i " int ")
31 (output NULL)
32)
33)
34 (call_file "test.c")
35 (call_line 9)
36)

Listing 2. Part of the Generated MXIF.

Figure 2 shows the result of parallelization in simplified
form. It can be seen from this figure that the framework is
able to extract the available parallelism in the application.
Listing (2) shows the generated MXIF.

V. EXPERIMENTAL RESULTS

In order to check the scalability of the parallel application,
we have executed it on two machines. Machine 1 is has 40 core

Fig. 3. Speedup Results on Machine 1.

Fig. 4. Speedup Results on Machine 2.

(20 core 2 way hyper threaded) on Intel(R) Xeon(R) CPU E5-
2670 v2 running at 2.50 GHz having 96 GB of main memory.
Machine 2 has 64 core (16 core 4 way hyper threaded) IBM
Power 7 v2.3 running at 3.3 GHz containing 164 GB main
memory. Figure 3 and Figure 4 depict the speedup results for
both the machines showing the scalability upto 64 and 128
threads respectively.

VI. CONCLUSIONS

With the emergence of multicore processor architectures, we
can no longer avoid parallelizing applications but parallelizing
compilers have not been very successful in this regard. In this
paper, we have presented the integrated use of two tools which
are very complementary in their functionality. MCROF provides
a detailed profile which is combined with the source level
information to automatically generate parallel representation
of the application. XPU is then used for parallelism expression
as it provides minimally invasive code changes to express
the available parallelism in an application. Not only does the
combined approach extracts the available parallelism, it also
reduces substantially the overall time needed to parallelize
sequential applications. Future work includes the completion
of code-generation part and detailed testing of the framework
with a wide variety of applications.

ACKNOWLEDGMENT

This research is supported by Artemis EMC2 Project (grant
621429), Artemis Almarvi Project (grant 621439) and Artemis
CRAFTERS Project (grant 295371).

REFERENCES

[1] M. Horowitz and W. Dally, “How Scaling Will change Processor
Architecture,” in ISSCC, vol. 1, 2004, pp. 132–133.

[2] M. D. Ernst, “Static and Dynamic Analysis: Synergy and Duality,” in
WODA 2003: Workshop on Dynamic Analysis, Portland, Oregon, May
9, 2003, pp. 24–27.

[3] W. Heirman, D. Stroobandt, N. R. Miniskar, and R. Wuyts,
“A communication profiler to optimize embedded resource usage,”
Annual Workshop on Circuits, Systems and Signal Processing,
20th, Proceedings, pp. HASH(0x57aafb8)–HASH(0x57aafb8), 2009.
[Online]. Available: https://biblio.ugent.be/publication/820031

[4] S. Ostadzadeh, “Quantitative Application Data Flow Characterization
for Heterogeneous Multicore Architectures,” Ph.D. dissertation, Delft
University of Technology, Delft, Netherlands, December 2012.

[5] “Par4All: An Automatic Parallelizing and Optimizing Compiler by HPC
Project,” http://www.par4all.org.

[6] C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A Source-to-Source Compiler Infrastructure for Multicores,”
Computer, vol. 42, no. 12, pp. 36–42, Dec. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MC.2009.385

[7] Appentra, “Parallware,” http://www.appentra.com/products/parallware.
[8] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. A.

Padua, P. Petersen, W. M. Pottenger, L. Rauchwerger, P. Tu, and
S. Weatherford, “Polaris: Improving the Effectiveness of Parallelizing
Compilers,” in Proceedings of the 7th International Workshop on
Languages and Compilers for Parallel Computing, ser. LCPC ’94.
London, UK, UK: Springer-Verlag, 1995, pp. 141–154. [Online].
Available: http://dl.acm.org/citation.cfm?id=645672.665547

[9] U. Bondhugula, J. Ramanujam, and P. Sadayappan, “PLuTo: A Practical
and Fully Automatic Polyhedral Parallelizer and Locality Optimizer,”
The Ohio State University, Tech. Rep., Oct 2007.

[10] Intel, “Automatic Parallelization with Intel Compilers,” https://software.
intel.com/en-us/articles/automatic-parallelization-with-intel-compilers.

[11] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of Su-
perscalar Processors. McGraw-Hill Higher Education, 2002. [Online].
Available: http://books.google.fr/books?id=VIWLAAAACAAJ

[12] “Pareon by Vector Fabrics B.V,” http://www.vectorfabrics.com/products.
[13] “ROSE Compiler Infrastructure,” http://www.rosecompiler.org.
[14] I. Ashraf, V. Sima, and K. Bertels, “Intra-Application Data-

Communication Characterization,” in Proc. 1st International Workshop
on Communication Architectures at Extreme Scale, Frankfurt, Germany,
July 2015.

[15] C. Luk and et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI ’05. New York, NY, USA:
ACM, 2005, pp. 190–200.

[16] N. Khammassi, “High-level Structured Programming Models for
Explicit and Automatic Parallelization on Multicore Architectures,”
Theses, Université de Bretagne Sud, Dec. 2014. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01207434

[17] N. Khammassi et al., “Design and Implementation of a Cache Hierarchy-
aware Task Scheduling for Parallel Loops on Multicore Architectures,”
in PDCTA, Sydney, Australia, 2014.

[18] N. Khammassi, J. Le Lann, J. Diguet, and A. Skrzyniarz, “MHPM:
Multi-Scale Hybrid Programming Model: A Flexible Parallelization
Methodology,” in Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Communication, ser.
HPCC ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
71–80. [Online]. Available: http://dx.doi.org/10.1109/HPCC.2012.20

[19] N. Khammassi and J.-C. Le Lann, “A High-level Programming
Model to Ease Pipeline Parallelism Expression on Shared Memory
Multicore Architectures,” in Proceedings of the High Performance
Computing Symposium, ser. HPC ’14. San Diego, CA, USA: Society
for Computer Simulation International, 2014, pp. 9:1–9:8. [Online].
Available: http://dl.acm.org/citation.cfm?id=2663510.2663519

[20] N. Khammassi and J. Le Lann, “Tackling Real-Time Signal
Processing Applications on Shared Memory Multicore Architectures
Using XPU,” Feb 2014, conference proceeding. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00958087

[21] J. Koskinen, “Metaprogramming in C++.” [Online]. Available:
www.cs.tut.fi/∼kk/webstuff/MetaprogrammingCpp.pdf

[22] H. Singh, “Introspective C++,” Ph.D. dissertation, Virginia Polytechnic
Institute, Virginia, VA, USA, 2004.

