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Abstract— Nowadays, embedded systems are evolving from 
closed, rather static single-application systems towards open, 
flexible, multi-application systems of systems. From a safety 
engineering perspective, this trend certainly is a curse as it 
detriments the base assumptions of established engineering 
methodologies. Combinatorial complexity and the amount of 
uncertainty encountered in the analysis of such systems are the 
reason why we investigate the possibility of an integrated contract-
based approach. Our solution approach is covering vertical 
dependencies (between platform and application) and horizontal 
dependencies (between applications) in order to efficiently assure 
the safety of the whole system of systems through modularization. 
Moreover, the contract-based nature of our solution helps 
engineers to systematically and unambiguously define potential 
interferences as well as validating the compatibility of the 
components (platform and applications) behavior ensuring safety 
will not be compromised.  
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I. INTRODUCTION 
In recent years, developers of distributed embedded systems 

design their products in accordance with the principles of 
integrated architectures. These principles are applied for regular 
products as well as for those that have to be safe. Standards such 
as ARINC 653 in the avionics and AUTOSAR in the automotive 
domain constitute the corresponding foundations in their 
respective domains. The envisioned shift towards multi-core 
platforms, which are relatively cheap and yet powerful, rises 
additional challenges – in particular with respect to safety 
assurance. Taking full advantage of the multi-core technology 
implies the coexistence of applications on the same electrical 
control unit with several integrity levels (mixed criticality). In 
parallel, the trend towards open systems, such as dynamic 
compositions of different cars, traffic infrastructure, and 
Internet-based services, manifests in new computing paradigms, 
such as cyber-physical system and Internet of thinks. However, 
it is clear that many of the envisioned services and applications 
require very high integrity, as we are talking about safety critical 
systems. 

In common practice, safety is ensured through diligent 
engineering that is guided by domain-specific safety standards 
such as the ISO 262626 for automotive. Such engineering is 
typically a complex and laborious endeavor, demanding detailed 
domain knowledge and experience from the engineers. Base 
assumption of any established safety engineering approach is 

that the system, as well as its anticipated environment, is known 
(Safety Element out of Context of ISO 26262 being one notable 
example to soften this base assumption) and that they can thus 
be analyzed comprehensively. Integration tasks are exclusively 
executed by human engineers at development time and in 
accordance with the aforementioned regulations. Combining 
different applications on a single ECU, maybe even supporting 
dynamic download and update, allowing dynamic integration of 
different systems in the field – these integration scenarios go 
clearly beyond what is possible based on today’s engineering 
approaches. As a consequence, insufficient safety assurance 
might become a show stopper for some of the most promising 
and ground breaking aspects of the new computing paradigms. 

Recognizing this problem, some research has been done with 
respect to formalizing and modularizing safety in an adequate 
way to support the different types of integration scenarios. In the 
recent nSafeCer project [1], for instance, it has been investigated 
how component-based integration could efficiently be realized 
based on Safety Contracts specified in OCL (i.e. based on the 
well-known UML) [2]. The approach focuses on early safety 
verification support, whereas our work builds on two approaches 
that are similar in the utilization of contracts, but that have been 
specifically designed to enable automated integration. On the 
one hand, the VerSaI (Vertical Safety Interface) approach for 
dealing with safety dependencies between applications and the 
execution platform on which the applications get deployed [3]. 
And on the other hand, the ConSerts (Conditional Safety 
Certificates) approach focusing on safety assurance of open 
systems. ConSerts are basically a means to establish a variable 
safety case with formalized demands (i.e. assumptions) to be 
resolved when systems compose (i.e. at runtime). Based on the 
fulfillment of assumptions, guarantees are determined and 
propagated through the dynamically formed composition 
hierarchy (i.e. through a series of guarantee-demand 
relationships) [4].  

A first combination of these approaches has been proposed 
in M2C2. (Multidirectional Modular Conditional Safety 
Certificates) [5]. M2C2 is a solution for a dynamic runtime 
safety assessment for a mixed critical multicore-system of 
systems. The approach can support the development to focus on 
emerging safety incompatibilities and provide suggestions for a 
valid alternative strategy for integration, reducing the effort 
needed for safety assessment and thus time to market. The 
extension of M2C2 presented here is the linkage between the 



dependencies and the discussion of the potential interactions. 
The next section describes the different types of safety-related 
dependencies considered by M2C2. We will then briefly explain 
the M2C2 approach and the newest extensions before we finally 
conclude in Section IV. 

II. HORIZONTAL AND VERICAL DEPENDENCIES 
In order to modularize safety on the level of system 

components, understanding the boundaries and the interaction 
schemes between components is key. And since it is our aim to 
explicitly reflect safety-related requirements between 
application software and the platform it is running on, we divide 
systems in two corresponding types of elements: platform 
elements and application elements. Platform elements are 
components (hardware and software) which provide function-
independent platform services. Such services can provide 
hardware resources, but also other OS or middleware services 
(e.g. IO or communication). Applications are software 
components that provide system-level functions directly to 
human end users or (as services) to other applications. Based on 
this distinction between application and platform, we encounter 
two types of safety relevant dependencies that are first 
introduced by [6]. On the one hand, the horizontal dependencies, 
which are dependencies between applications that might either 
be running on the same or on different platforms. On the other 
hand, vertical dependencies, which are dependencies between a 
platform and an application. Both kinds of dependencies shall be 
addressed by corresponding safety interfaces, i.e. horizontal and 
vertical safety interfaces (cf. Figure 1). 

The vertical interfaces (as introduced by the VerSaI 
approach) consequently describe the safety-relevant relations 
between an application and a platform service. Platform 
services, e.g., libraries, communication protocols, or operating 
system services, tend to be developed with reuse in mind from 
the early design phases on. Platform developers do not consider 
in advance the possible systems in which the platform service 
will be allocated and they do not know in which way the service 
will be part of the application functionality. The horizontal 
interfaces (as introduced by the ConSerts approach) describe 
safety-relevant relations between applications that might either 
be located on the same (safety-related independence then to be 
proven separately) or on different platforms. These relations are 
characterized by formalized safety guarantees and demands that 
are associated with required and provided services of 
applications. Different applications (and thus systems/devices) 
join together to render higher level services that could not be 
rendered by a single system alone. Conceptually, dynamic 
composition hierarchies are spanned up in this process, where 
each composition element possesses its own ConSert. ConSerts 
are evaluated along the service-based dependencies in the 
composition, finally determining the safety guarantees of the 
root element. The root application ConSert has been engineered 
with the whole application in mind and it also holds the overall 
safety responsibility. Accordingly, any ConSert has a 
certification scope and responsibility over anything that is below 
itself in the composition hierarchy. In relation to Figure 1 and 
the notion of horizontal interfaces we state that even though we 
have certain composition hierarchies between applications, the 
dependencies are still denoted as horizontal safety dependencies. 

Fig. 1. Horizontal and vertical dependencies 

III. MULTIDIRECTIONAL MODULAR CONDITIONAL SAFETY 
CERTIFICATES 

The main idea of the solution is to shift the final safety 
evaluation of an arbitrary constellation of applications and 
platforms from development time to runtime. The safety related 
information of the smallest units (e.g. applications, components, 
modules) is defined at development time in contracts. At runtime 
integration, the systems shall assemble the safety critical 
information and evaluate the safety of the overall composition. 
In addition, the system checks the validity of the contracts at 
runtime to be able to deal with runtime adaptations. Shifting 
safety evaluations into runtime significantly reduces 
development time complexity and thus the time to market of new 
improvements. We denote these contracts as Multidirectional 
Modular Conditional Certificates (M2C2), since they are 
multidirectional in covering both, horizontal and vertical 
interfaces. They are modular due to their composability 
characteristics and they are conditional because the contracts can 
have open ends (demands) that need to be fulfilled by the 
environment. In the following subsections, we will give an 
overview of the M2C2 solution and explain the different sub 
contributions as well as their interactions. 

A. Solution Overview 
In M2C2 each considered unit of composition has its own 

runtime representation of a contract. A contract consists of a 
demand and guarantee interface. Demands are requirements 
outside the boundaries of a module. They represent safety 
requirements wrt. the system environment that cannot be 
verified at design time already due to a lack of information. The 
environment is either related to the horizontal interfaces (i.e. 
other systems or properties of the physical environment) or to 
the vertical interfaces (i.e. safety related characteristics of the 
underlying platform). Due to the variability of the environment, 
there will typically be different constellations of demands 
associated with different levels of guarantees. Figure 2 illustrates 
the basic components of M2C2, the demand and guarantee based 
contract languages VerSaI (Vertical Safety Interface) for the 
vertical safety related dependencies, ConSerts (Conditional 
Safety Certification for Open Adaptive Systems) for the 
horizontal safety related dependencies, and, means for their 
integration to be explained later.  

B. Horizontal and Vertical Interaction 
M2C2 guarantee and demand relations can be represented as 

a tree like graph as it has been introduced by the ConSerts 
approach. Each sub-tree of this graph is a contract, a ConSert 
thus being a set of contracts or a “variable” contract. The 
relations between the elements of this tree are binary logic, 
specifying which demands must be fulfilled to provide certain 
guarantees. The demands and guarantees are defined using 
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service-specific safety properties in combination with an 
integrity level, stating the assurance level delivered by a 
guarantee or requested by a demand (cf. [4] for more details). 

Moreover, each application has its vertical interfaces with a 
platform and if the application is required to provide any service 
guarantee, the vertical safety interface has to be fulfilled. To 
specify such relationships, the VerSaI language uses 
dependency classes which are platform service failures (focus 
on the detection or avoidance of platform failure), health 
monitoring (focus on trapping and encapsulating of application 
failures), service diversity (also called dissimilarity or 
independence) and resource protection (to ensure partitioning 
and segregation). The platform developer can define platform 
guaranties based on the dependency classes, defined failure 
modes for a generic application (e.g. execution time deviation) 
and platform elements (e.g. scheduling jitter failure) [3]. Based 
on the dependency classes and the associated failure modes, 
combined with the horizontal demands and guarantees of an 
application, the vertical application demands could be 
automatically derived.  

Fig. 2. M2C2 Solution Overview 

The M2C2 contracts must be available at runtime in a format 
appropriate for automated composition and evaluation. For this 
reason, we describe them in XML format. A grammar extension 
allows combining the vertical VerSaI-based contracts with the 
horizontal ConSerts based contracts. The main idea is that within 
a ConSerts conditional certificate of a configuration (i.e. 
application variants that can be switched dynamically; Confx in 
Figure 2) of an application, the Vertical Demands are integrated. 
A M2C2 certificate can technically be represented as an 
optimized BDD (Binary Decision Diagrams) for maximizing 
evaluation performance. The BDD contains the information that 
an application guarantee can be granted e.g. if  different 
demands to other applications are satisfied at runtime. In 
addition, Vertical demands are logically connected within the 
BDD and the horizontal demands. E.g., a monitor application 
fulfills its guarantee to set a fail-safe signal (horizontal) 1) if it 
receives a fail-safe signal from an extern application (horizontal) 
and dedicated message corruption, loss and transmission 
demands are fulfilled (vertical) or 2) if the application is able to 
determine the fail-safe signal itself. In case 2), the application 
demands to additional sensor applications (horizontal) and 
analog output value and delay failures (vertical) need to be 
fulfilled at runtime.  

The example shows that the holistic consideration of 
horizontal and vertical dependencies offers additional levels of 
variety and flexibility. The solution idea is to identify based on 
the initial resolution of the horizontal conditional certificates the 
corresponding vertical demands. We assume that in many 
situations, especially in case of a multi-core system, several and 
different combinations of horizontal and vertical demands may 
fulfill an applications guarantee. That implies an additional level 
of adaptation within M2C2 compared with just ConSerts, for 
instance in the area of fail operational to support commercial-of-
the-shelf multicore platforms for e.g. autonomous driving. 

IV. CONCLUSION 
In summary, M2C2 is a solution concept to guarantee safety 

for open and adaptive multi-core systems. The main idea is to 
split the safety relevant dependencies within a system or system 
of systems in a horizontal and vertical part. Demand and 
guarantee based conditional certificates are used as means of 
specification. At runtime, the M2C2 framework autonomously 
evaluates if the safety relevant interfaces are valid and 
compatible and what top-level guarantees can be offered for a 
given composition. Same as ConSerts, M2C2 does provide 
support to pre-configured adaptive systems, where the system is 
self-adaptive at operational time based on a range of already 
defined configurations.  

The feasibility and limitations of M2C2 remains to be 
evaluated, since we are still in an early stage of work. We are 
currently applying M2C2 in a case study with a hybrid 
powertrain scenario and an eclipse-based tool implementation to 
create and evaluate the contracts. Further ongoing work is 
focusing on a method to identify and address platform-induced 
interferences automatically to ease the definitions of the vertical 
contracts. 
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