
Towards safe mixed critical embedded multi-core
systems in dynamic and changeable environments

Christoph Dropmann, Tiago Amorim, Alejandra Ruiz, Daniel Schneider
Fraunhofer IESE, Kaiserslautern GERMANY

ICT-European Software Institute Division, TECNALIA. Derio, SPAIN
{christoph.dropmann, tiago.amorim, alejandra.ruiz, daniel.schneider}@tecnalia.com / @iese.fraunhofer.de

Abstract— Nowadays, embedded systems are evolving from
closed, rather static single-application systems towards open,
flexible, multi-application systems of systems. From a safety
engineering perspective, this trend certainly is a curse as it
detriments the base assumptions of established engineering
methodologies. Combinatorial complexity and the amount of
uncertainty encountered in the analysis of such systems are the
reason why we investigate the possibility of an integrated contract-
based approach. Our solution approach is covering vertical
dependencies (between platform and application) and horizontal
dependencies (between applications) in order to efficiently assure
the safety of the whole system of systems through modularization.
Moreover, the contract-based nature of our solution helps
engineers to systematically and unambiguously define potential
interferences as well as validating the compatibility of the
components (platform and applications) behavior ensuring safety
will not be compromised.

Keywords— safety, assurance, contracts, multi-core, ConSerts

I. INTRODUCTION
In recent years, developers of distributed embedded systems

design their products in accordance with the principles of
integrated architectures. These principles are applied for regular
products as well as for those that have to be safe. Standards such
as ARINC 653 in the avionics and AUTOSAR in the automotive
domain constitute the corresponding foundations in their
respective domains. The envisioned shift towards multi-core
platforms, which are relatively cheap and yet powerful, rises
additional challenges – in particular with respect to safety
assurance. Taking full advantage of the multi-core technology
implies the coexistence of applications on the same electrical
control unit with several integrity levels (mixed criticality). In
parallel, the trend towards open systems, such as dynamic
compositions of different cars, traffic infrastructure, and
Internet-based services, manifests in new computing paradigms,
such as cyber-physical system and Internet of thinks. However,
it is clear that many of the envisioned services and applications
require very high integrity, as we are talking about safety critical
systems.

In common practice, safety is ensured through diligent
engineering that is guided by domain-specific safety standards
such as the ISO 262626 for automotive. Such engineering is
typically a complex and laborious endeavor, demanding detailed
domain knowledge and experience from the engineers. Base
assumption of any established safety engineering approach is

that the system, as well as its anticipated environment, is known
(Safety Element out of Context of ISO 26262 being one notable
example to soften this base assumption) and that they can thus
be analyzed comprehensively. Integration tasks are exclusively
executed by human engineers at development time and in
accordance with the aforementioned regulations. Combining
different applications on a single ECU, maybe even supporting
dynamic download and update, allowing dynamic integration of
different systems in the field – these integration scenarios go
clearly beyond what is possible based on today’s engineering
approaches. As a consequence, insufficient safety assurance
might become a show stopper for some of the most promising
and ground breaking aspects of the new computing paradigms.

Recognizing this problem, some research has been done with
respect to formalizing and modularizing safety in an adequate
way to support the different types of integration scenarios. In the
recent nSafeCer project [1], for instance, it has been investigated
how component-based integration could efficiently be realized
based on Safety Contracts specified in OCL (i.e. based on the
well-known UML) [2]. The approach focuses on early safety
verification support, whereas our work builds on two approaches
that are similar in the utilization of contracts, but that have been
specifically designed to enable automated integration. On the
one hand, the VerSaI (Vertical Safety Interface) approach for
dealing with safety dependencies between applications and the
execution platform on which the applications get deployed [3].
And on the other hand, the ConSerts (Conditional Safety
Certificates) approach focusing on safety assurance of open
systems. ConSerts are basically a means to establish a variable
safety case with formalized demands (i.e. assumptions) to be
resolved when systems compose (i.e. at runtime). Based on the
fulfillment of assumptions, guarantees are determined and
propagated through the dynamically formed composition
hierarchy (i.e. through a series of guarantee-demand
relationships) [4].

A first combination of these approaches has been proposed
in M2C2. (Multidirectional Modular Conditional Safety
Certificates) [5]. M2C2 is a solution for a dynamic runtime
safety assessment for a mixed critical multicore-system of
systems. The approach can support the development to focus on
emerging safety incompatibilities and provide suggestions for a
valid alternative strategy for integration, reducing the effort
needed for safety assessment and thus time to market. The
extension of M2C2 presented here is the linkage between the

dependencies and the discussion of the potential interactions.
The next section describes the different types of safety-related
dependencies considered by M2C2. We will then briefly explain
the M2C2 approach and the newest extensions before we finally
conclude in Section IV.

II. HORIZONTAL AND VERICAL DEPENDENCIES
In order to modularize safety on the level of system

components, understanding the boundaries and the interaction
schemes between components is key. And since it is our aim to
explicitly reflect safety-related requirements between
application software and the platform it is running on, we divide
systems in two corresponding types of elements: platform
elements and application elements. Platform elements are
components (hardware and software) which provide function-
independent platform services. Such services can provide
hardware resources, but also other OS or middleware services
(e.g. IO or communication). Applications are software
components that provide system-level functions directly to
human end users or (as services) to other applications. Based on
this distinction between application and platform, we encounter
two types of safety relevant dependencies that are first
introduced by [6]. On the one hand, the horizontal dependencies,
which are dependencies between applications that might either
be running on the same or on different platforms. On the other
hand, vertical dependencies, which are dependencies between a
platform and an application. Both kinds of dependencies shall be
addressed by corresponding safety interfaces, i.e. horizontal and
vertical safety interfaces (cf. Figure 1).

The vertical interfaces (as introduced by the VerSaI
approach) consequently describe the safety-relevant relations
between an application and a platform service. Platform
services, e.g., libraries, communication protocols, or operating
system services, tend to be developed with reuse in mind from
the early design phases on. Platform developers do not consider
in advance the possible systems in which the platform service
will be allocated and they do not know in which way the service
will be part of the application functionality. The horizontal
interfaces (as introduced by the ConSerts approach) describe
safety-relevant relations between applications that might either
be located on the same (safety-related independence then to be
proven separately) or on different platforms. These relations are
characterized by formalized safety guarantees and demands that
are associated with required and provided services of
applications. Different applications (and thus systems/devices)
join together to render higher level services that could not be
rendered by a single system alone. Conceptually, dynamic
composition hierarchies are spanned up in this process, where
each composition element possesses its own ConSert. ConSerts
are evaluated along the service-based dependencies in the
composition, finally determining the safety guarantees of the
root element. The root application ConSert has been engineered
with the whole application in mind and it also holds the overall
safety responsibility. Accordingly, any ConSert has a
certification scope and responsibility over anything that is below
itself in the composition hierarchy. In relation to Figure 1 and
the notion of horizontal interfaces we state that even though we
have certain composition hierarchies between applications, the
dependencies are still denoted as horizontal safety dependencies.

Fig. 1. Horizontal and vertical dependencies

III. MULTIDIRECTIONAL MODULAR CONDITIONAL SAFETY
CERTIFICATES

The main idea of the solution is to shift the final safety
evaluation of an arbitrary constellation of applications and
platforms from development time to runtime. The safety related
information of the smallest units (e.g. applications, components,
modules) is defined at development time in contracts. At runtime
integration, the systems shall assemble the safety critical
information and evaluate the safety of the overall composition.
In addition, the system checks the validity of the contracts at
runtime to be able to deal with runtime adaptations. Shifting
safety evaluations into runtime significantly reduces
development time complexity and thus the time to market of new
improvements. We denote these contracts as Multidirectional
Modular Conditional Certificates (M2C2), since they are
multidirectional in covering both, horizontal and vertical
interfaces. They are modular due to their composability
characteristics and they are conditional because the contracts can
have open ends (demands) that need to be fulfilled by the
environment. In the following subsections, we will give an
overview of the M2C2 solution and explain the different sub
contributions as well as their interactions.

A. Solution Overview
In M2C2 each considered unit of composition has its own

runtime representation of a contract. A contract consists of a
demand and guarantee interface. Demands are requirements
outside the boundaries of a module. They represent safety
requirements wrt. the system environment that cannot be
verified at design time already due to a lack of information. The
environment is either related to the horizontal interfaces (i.e.
other systems or properties of the physical environment) or to
the vertical interfaces (i.e. safety related characteristics of the
underlying platform). Due to the variability of the environment,
there will typically be different constellations of demands
associated with different levels of guarantees. Figure 2 illustrates
the basic components of M2C2, the demand and guarantee based
contract languages VerSaI (Vertical Safety Interface) for the
vertical safety related dependencies, ConSerts (Conditional
Safety Certification for Open Adaptive Systems) for the
horizontal safety related dependencies, and, means for their
integration to be explained later.

B. Horizontal and Vertical Interaction
M2C2 guarantee and demand relations can be represented as

a tree like graph as it has been introduced by the ConSerts
approach. Each sub-tree of this graph is a contract, a ConSert
thus being a set of contracts or a “variable” contract. The
relations between the elements of this tree are binary logic,
specifying which demands must be fulfilled to provide certain
guarantees. The demands and guarantees are defined using

Application 1 Application 2

Platform 1

Horizontal Interface

Vertical Interface

Application 3

Platform 2

Horizontal Interface

Vertical Interface

service-specific safety properties in combination with an
integrity level, stating the assurance level delivered by a
guarantee or requested by a demand (cf. [4] for more details).

Moreover, each application has its vertical interfaces with a
platform and if the application is required to provide any service
guarantee, the vertical safety interface has to be fulfilled. To
specify such relationships, the VerSaI language uses
dependency classes which are platform service failures (focus
on the detection or avoidance of platform failure), health
monitoring (focus on trapping and encapsulating of application
failures), service diversity (also called dissimilarity or
independence) and resource protection (to ensure partitioning
and segregation). The platform developer can define platform
guaranties based on the dependency classes, defined failure
modes for a generic application (e.g. execution time deviation)
and platform elements (e.g. scheduling jitter failure) [3]. Based
on the dependency classes and the associated failure modes,
combined with the horizontal demands and guarantees of an
application, the vertical application demands could be
automatically derived.

Fig. 2. M2C2 Solution Overview

The M2C2 contracts must be available at runtime in a format
appropriate for automated composition and evaluation. For this
reason, we describe them in XML format. A grammar extension
allows combining the vertical VerSaI-based contracts with the
horizontal ConSerts based contracts. The main idea is that within
a ConSerts conditional certificate of a configuration (i.e.
application variants that can be switched dynamically; Confx in
Figure 2) of an application, the Vertical Demands are integrated.
A M2C2 certificate can technically be represented as an
optimized BDD (Binary Decision Diagrams) for maximizing
evaluation performance. The BDD contains the information that
an application guarantee can be granted e.g. if different
demands to other applications are satisfied at runtime. In
addition, Vertical demands are logically connected within the
BDD and the horizontal demands. E.g., a monitor application
fulfills its guarantee to set a fail-safe signal (horizontal) 1) if it
receives a fail-safe signal from an extern application (horizontal)
and dedicated message corruption, loss and transmission
demands are fulfilled (vertical) or 2) if the application is able to
determine the fail-safe signal itself. In case 2), the application
demands to additional sensor applications (horizontal) and
analog output value and delay failures (vertical) need to be
fulfilled at runtime.

The example shows that the holistic consideration of
horizontal and vertical dependencies offers additional levels of
variety and flexibility. The solution idea is to identify based on
the initial resolution of the horizontal conditional certificates the
corresponding vertical demands. We assume that in many
situations, especially in case of a multi-core system, several and
different combinations of horizontal and vertical demands may
fulfill an applications guarantee. That implies an additional level
of adaptation within M2C2 compared with just ConSerts, for
instance in the area of fail operational to support commercial-of-
the-shelf multicore platforms for e.g. autonomous driving.

IV. CONCLUSION
In summary, M2C2 is a solution concept to guarantee safety

for open and adaptive multi-core systems. The main idea is to
split the safety relevant dependencies within a system or system
of systems in a horizontal and vertical part. Demand and
guarantee based conditional certificates are used as means of
specification. At runtime, the M2C2 framework autonomously
evaluates if the safety relevant interfaces are valid and
compatible and what top-level guarantees can be offered for a
given composition. Same as ConSerts, M2C2 does provide
support to pre-configured adaptive systems, where the system is
self-adaptive at operational time based on a range of already
defined configurations.

The feasibility and limitations of M2C2 remains to be
evaluated, since we are still in an early stage of work. We are
currently applying M2C2 in a case study with a hybrid
powertrain scenario and an eclipse-based tool implementation to
create and evaluate the contracts. Further ongoing work is
focusing on a method to identify and address platform-induced
interferences automatically to ease the definitions of the vertical
contracts.

ACKNOWLEDGMENT
This research has received funding from the EMC2 project.

This is an ARTEMIS Joint Undertaking project in the
Innovation Pilot Programme ‘Computing platforms for
embedded systems’ (AIPP5) under grant agreement n° 621429.

REFERENCES

[1] nSafeCer project: Safety Certication of Software-Intensive Systems with
Reusable Components. Project Grant Agreement no 295373. More
information at: http://safecer.eu/, [Online].

[2] Gomez-Martinez et al., „Model-Based Verification of Safety
Contracts,“ in Springer International Publishing, 2015.

[3] B. Zimmer et al., „Vertical Safety Interfaces -- Improving the Efficiency
of Modular Certification,“ in SAFECOMP, 2011.

[4] D. Schneider et al., „Conditional Safety Certification of Open Adaptive
Systems,“ in ACM Trans. Auton. Adapt. Syst. 8, p. Article 8, 2013.

[5] T. Amorim, A. Ruiz, C. Dropmann, D. Schneider, „Multidirectional
Modular Conditional Safety Certificates,“ in SAFECOMP, ASSURE,
2015.

[6] B. Zimmer, S. Bürklen, M. I. Knoop, J. Höfflinger and M. Trapp,
„Vertical Safety Interfaces - Improving the Efficiency of Modular
Certification,“ in SAFECOMP, 2011.

Application
Demands

Platform
Guarantees

Previous work

Supplementary
work

@runtime

De
m

an
ds

G
ua

ra
nt

ee
s

Platform
Guarantees

Application
Demands

@runtime

De
m

an
ds

G
ua

ra
nt

ee
s

@runtime
Integration & Validation

Grammar extension

	I. Introduction
	II. Horizontal and Verical Dependencies
	III. Multidirectional Modular Conditional Safety Certificates
	A. Solution Overview
	B. Horizontal and Vertical Interaction

	IV. Conclusion
	Acknowledgment
	References

