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Abstract—The paper proposes a comparison between hardware 

and software solutions for resource partitioning in the scenario of a 

multi-core based mixed criticality application. A reference avionic 

application has been implemented in two versions: one using a 

software partitioning solution and one using a hardware partitioning 

solution. Both versions of the system have been evaluated using fault 

injection simulation experiments. Results show that the hardware 

solution can provide better isolation with respect to the software 

solutions when soft errors affecting processor memory elements are 

considered. Conversely, when software defects are of concerns, the 

two solutions provide the same level of robustness. 
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I.  INTRODUCTION 

Multicore architectures have been on the market for 
several years now, and have acquired a clear dominant 
position. Chip manufacturers are already focused on 
development and production of multicore chips and are 
advancing towards ever more complex and performant 
many-core architectures. Whereas many industries can 
only benefit from more performant architecture, e.g. 
consumer electronics, several other industries are 
struggling with the adoption of such architecture, 
mainly due to safety regulations and certifications 
concerns. Such concerns are mainly tied to the 
challenging problem of certifying a safety-critical 
system implemented on a multicore architecture 
according to international regulation prescriptions. In 
the avionics industry, one of the goals of multicore 
introduction is the reduction of Space, Weight and 
Power (SWaP) consumed by avionic equipment, 
through consolidation of several applications on a 
single multicore chip. This field of research is very 
active, and the main avionics players are highly 
interested in solving the problem since, to the best of 
our knowledge, no solution has been widely accepted 
yet.  

One of the many challenges in the path towards the 
definition of a reference architecture for consolidating 
mixed criticality applications on multicore 
architectures is resource partitioning. Since two or 

more applications use a single processing unit (PU), 
they can virtually access everything is connected to that 
PU. However, in many applications, this is neither 
necessary nor desirable, since it may affect the system 
safety: the misuse of some resources by one particular 
application may led to starvation on all other 
applications in the system, which in turn means a 
potentially catastrophic misbehavior (e.g., an 
application locking forever a shared resource may lead 
other applications to miss hard real-time deadline).  To 
solve the partitioning problem, two main solutions have 
been proposed. A first solution consists in software 
partitioning, which is implemented by means of a 
special software layer called type-1 hypervisor: in this 
solution applications are separated by means of MMU 
configuration and processor scheduling; the second 
solution consists in hardware partitioning, which 
leverages special-purpose hardware units available in 
multicore processors that allow enforcing resource 
access policies for each core. 

In this paper the application described in [3] is 
implemented in two versions: one based on a type-1 
hypervisor and one based on a hardware partitioning. 
The reliability of the two implementations is then 
evaluated by means of fault-injection simulations,  
considering two fault models: single-event-upsets in 
the processor registers and in the configuration 
registers of the target hardware were used to model 
transient hardware faults, while random bit-flips in the 
instruction memory were used to model software bugs, 
as proposed in [4]. Results gathered on a Xilinx Zynq 
system-on-programmable-chip (SoPC) show that the 
considered hardware solution is more robust with 
respect to hardware faults, guaranteeing a better 
partition than the software solution. Conversely, the 
two techniques provide the same degree of robustness 
when software bugs are considered. 

This paper is organized as follows. Section II reports 
a brief overview of the state-of-the-art; section III 
presents the architecture used in the experiments; 
section IV discusses the results we gathered on both 
implementations, while section V draws some 
conclusions and outlines future steps. 
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II. PREVIOUS WORKS 

 Consolidation of several mixed criticality 
applications has been a goal for avionics for several 
years. In the past this goal brought to the development 
of architectural solutions like the Integrated Modular 
Avionics (IMA). IMA is a design concept by which 
several hardware resources are tightly controlled by 
software and can be shared among several applications, 
achieving a high level of integration [3]. In line with the 
IMA design concept, the Airlines Electronic Engineers 
Committee (AEEC) developed and adopted the 
ARINC653 standard[4][5][6][7][8]. ARINC653 is a 
standard for services to be provided by a Real Time 
Operating System (RTOS) to an avionic application. 
ARINC653 standardization helped reuse of avionic 
software and simplified its development process. 
ARINC653 is defined in several documents, however 
an outline is presented in [9]. ARINC653 always refers 
to systems implemented on single core architectures.  

In [1] a novel architecture was proposed to perform 
preliminary studies on the mixed-criticality 
applications consolidation on a multicore system in an 
avionic scenario. The architecture was implemented 
using a type-1 hypervisor and results show it to be a 
promising starting point for building a robust multi-
core based avionic architecture. In this paper the same 
architecture is implemented resorting to a dedicated 
hardware partitioning solution available in the multi-
core processor used for our experiments. 

III. ARCHITECTURE DESCRIPTION 

The architecture proposed in [1] implements a 
mixed criticality application on a multi-core chip with 
a companion Field Programmable Gate Array (FPGA).  

A. Conceptual architecture 

From a hardware point of view, the architecture 
relies on a dual-core processor with a watchdog timer, 
called System Watchdog Timer (SWDT) in the 
following, and two instances of a Watchdog processor 
(WDP), called WDP0 and WDP1. Each WDP is 
associated to a core of the processor, and it implements 
a Control Flow Check (CFC) strategy. Receiving a 
sequence of signatures from the software running on 
the associated core, WDP checks that the time interval 
between two subsequent signatures is within a 
predefined max time interval and that the received 
signatures are in a predefined expected sequence. This 
architecture includes two applications with different 
criticality levels, each deployed in its own partition 
bounded to one processor core and a subset of the 
available hardware resources (i.e., memory and I/O 
devices). In this paper we refer to a high criticality 
application (HCA), that is an application that is safety 
critical, and a low criticality application (LCA), that is 
not safety critical. The system includes a Critical 
Partition (CP) hosting the high criticality application, a 
Non-Critical Partition (NCP) hosting the low criticality 
application, and a System Partition (SP), which is in 
charge of managing error detection and recovery. In the 
scenario analyzed in this paper, there is no information 
exchange between the two applications.  

  
Fig. 1. Conceptual scheme of the architecture, showing hardware and software 

components. 

The watchdogs in the system are allocated to each 
application as follows: WDP0 is allocated to the CP, 
WDP1 is allocated to the NCP, SWDT is allocated to 
the CP. The SP handles both WDPs’ Interrupt Requests 
(IRQs). In response to the WDP1’s IRQ the NCP is 
rebooted, whereas in response to a WDP0’s IRQ, the 
whole system is rebooted and a reconfigure signal is 
activated on the interface of the architecture. This 
signal can be used in a hot-standby sparing 
configuration so that the spare computer can take over 
functionalities of the malfunctioning computer. The 
SWDT triggers a system reset entirely managed in 
hardware, and it also sends the reconfigure signal to the 
interface. Fig. 1 shows the conceptual architecture 
described so far. 

B. Architecture implementation using a type-1 

hypervisor 

The architecture we developed was implemented 
using a type-1 hypervisor. When using a type-1 
hypervisor as partitioning solution, the mapping of the 
conceptual architecture is rather straightforward, with 
the addition of a significant software layer running in 
Symmetric Multi-Processing (SMP) on the underlying 
multi-core processor.  

The type-1 hypervisor implements the partitioning 
through memory segmentation enforced by means of 
Memory Management Unit (MMU). The mapping of 
the conceptual architecture to the type-1 hypervisor’s 
partitioning scheme is showed in Fig. 2. In this scheme, 
each of the applications partitions is mapped to one of 
the two cores, while the SP can run on any core when 
an interrupt is received, in order to reduce latency. 

C. Architecture implementation using an hardware 

patitioning solution 

For the sake of this paper, we adopted ARM 
TrustZone as hardware partitioning mechanism, which 
allows defining two partitions. The TrustZone 
partitions are called Secure World and Non-Secure 
World respectively. The Secure World has all the 
privileges and is able to access all hardware resources, 
whereas the Non-Secure World can only access 
resources that have been explicitly allocated to it. The 
Secure World is in charge of allocating some of the 
hardware resources to the Non-Secure World. Any 
access from the Non-Secure World to a forbidden 
hardware resource results in a hardware exception to be 
managed in the Secure World context. 



 
Fig. 2. Scheme of the architecture implemented using a type-1 hypervisor. 

In the following the two partitions are called Secure 
World and Non-Secure World, to adhere to the 
TrustZone terminology. Core 0, SWDT, and WDP0 
were allocated to the secure world, whereas Core 1, and 
WDP1 were allocated to the non-secure world. Fig. 3 
presents the resulting architecture scheme. 

IV. EXPERIMENTS AND RESULTS 

A. Target Hardware 

The architecture was deployed on the same 
hardware in both implementations. The selected 
hardware was a Zynq SoPC (System-on-
Programmable-Chip), featuring a dual core ARM 
Cortex-A9 processor and an FPGA fabric on the same 
chip where the SWDT was implemented through a hard 
IP core already available in the SoPC, while WDPs 
were implemented as soft IP cores in the FPGA, as 
described in [1]. 

B. Experimental setup 

We used fault injection simulations to evaluate the 
robustness of the two implementations, as described in 
the following. 

1) The benchmark applications 
Both implementations were running similar 

benchmark software composed of two avionic 
applications. The benchmark applications are part of 
the Flight Management System (FMS) of a prototype 
of an Unmanned Aerial Vehicle (UAV) implemented 
by Alenia Aermacchi and shared in the scope of the 
EMC2 project. One of the two applications is a high 
criticality application and was mapped on the critical 
partition of the conceptual architecture described in 
section III, while the other (implementing a house-
keeping task) was mapped on the non-critical partition. 

C. Fault Injection Simulations 

Both system implementations’ reliability was 
evaluated through fault injection simulations. The 
following terminology is used: 

 Fault Injection Simulation or Simulation: a 
single fault is injected in the system in a 
single execution of the benchmark starting 
from reset state. 

 Fault Injection Simulation Campaign or 
Campaign: a collection of fault injection 
simulations. 

Each fault injection simulations campaign is 
characterized by a list of faults to be injected, referred 
to as the fault list. 

 
Fig. 3. Scheme of the architecture implemented using the TrustZone. Different 

tonalities in the hardware components are used to show the assignment of 
the resource to secure world (dark) or non-secure world (light). 

1) Fault List Generation 
The fault list is generated by random sampling of a 

fault space containing all the faults that can occur 
during a single run of the benchmark. The complete 
space is too big to allow an exhaustive testing of the 
system, thus the necessity to operate a random 
sampling. To obtain a meaningful fault list, faults that 
could not have an effect were pruned from the fault 
space. Moreover, only faults affecting the core running 
the LCA were considered, as the goal of this evaluation 
was to prove that a misbehaving LCA would not affect 
the HCA. Cardinality of the final sampling from the 
pruned fault list has been determined through a 
Montecarlo approach, observing that beyond the 
selected cardinality the measured average did not 
change significantly. 

2) Fault classification 
The faults were classified comparing the outputs of 

faulty executions with the expected outputs, gathered at 
the end of a fault-free execution. Faults were classified 
as follows: 

 Silent (S): a fault that did not have any effect 
on the outputs of the HCA, nor caused a 
deadline miss. 

 Timeout (TO): a fault that caused a timeout 
in the SWDT, triggering a system reset. 

 Failure (F): a fault that caused a 
misbehavior in the HCA, i.e. wrong outputs 
or a missed deadline. 

D. Fault Injection Simulations 

Hardware faults were simulated, by injecting single 
bit flips in memory elements within the system. Target 
memory elements were CPU registers and 
configuration registers. Software bugs were simulated 
through random bit flips in the code memory area 
before execution started. Finally, a bug was introduced 
in the LCA that simulated a case of resource misuse, 
forcing LCA to saturate the shared memory bus, to 
evaluate HCA performance penalty. 

1) Hardware Fault Injection Simulation and results 
Hardware fault injection simulations were 

performed as follows. First, the system was booted and 



an external debugger stopped execution at the 
beginning of the main loop. Then execution was 
continued for a given amount of time, until the injection 
time was reached, then the execution was stopped and 
the fault injected through the debugger. Finally, 
execution was completed and results downloaded to a 
host workstation, in charge of fault classification. 
Results are reported in Table 1. 

TABLE I.  HARDWARE FAULT INJECTION SIMULATIONS RESULTS 

 SILENT TIMEOUT FAILURE INJECTED 

TYPE-1 HYPERVISOR 5.726 274 0 6.000 

HARDWARE 

PARTITIONING 
5.959 41 0 6.000 

Results show that the hardware solution achieves 
better results, due to the absence of the hypervisor 
software layer, which is a single point of failure.  

2) Software Fault Injection Simulation and results 
The software fault injection was used to simulate 

effects of a software bug as proposed in [2]. 
Simulations were performed in the same way as 
described above, with the exception that the fault was 
injected in the code memory are before execution 
started. Results are reported in Table 2. Results show 
that HCA is completely immune to software bugs 
affecting LCA. 

TABLE II.  SOFTWARE FAULT INJECTION SIMULATIONS RESULTS 

 SILENT TIMEOUT FAILURE INJECTED 

TYPE-1 HYPERVISOR 10000 0 0 10000 

HARDWARE 

PARTITIONING 
10000 0 0 10000 

 

TABLE III.  PERFORMANCE PENALTY FOR THE HCA WHEN THE LCA 

SATURATED THE MEMORY BUS. 

 L1 CACHE IN 

NCP 
HCA PERF. PENALTY 

TYPE-1 HYPERVISOR ON 4.03 % 

OFF 4.08 % 

HARDWARE 

PARTITIONING 
ON 4.12 % 

OFF 4.52 % 

 

3) Resource misuse by LCA 
In this simulation, a fault was injected that caused 

the LCA to continuously access random memory 

locations in both reading and writing operations, thus 
saturating the shared memory bus. This simulation 
targets only effects of the shared memory bus 
congestion. Memory content corruption side effect has 
been avoided by simulation design. 

 Table 3 shows HCA performance penalty in terms 
of execution time, both when the L1 cache in the NCP 
was turned on and off. The software benchmark 
configuration in this simulation was modified in order 
to avoid that L1 cache in the CP could mask the faulty 
behavior of the LCA. Results show a similar 
performance penalty in both implementations.  

V.  CONCLUSIONS 

This paper implemented the architecture proposed 
in [1] with two partitioning solutions, one implemented 
through software, the other implemented through 
hardware. Both implementations’ reliability was 
evaluated using fault injection simulations. Results 
suggest that the hardware-implemented resource 
partitioning provides better protection of the critical 
application against soft errors that may affect the multi-
core hardware. Conversely, when software defects are 
considered (such as misbehavior in the not-critical 
application that caused it to saturate the memory bus) 
results show that the two implementation provide 
comparable results. 

ACKNOWLEDGMENTS 

The research was partially supported by the 
ARTEMIS Joint Undertaking project in the Innovation 
Pilot Programme “Computing platforms for embedded 
systems” (AIPP5) under grant agreement n. 621429 
(project EMC²). 

REFERENCES 

[1] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. 
Binello, and M. Terrone, “An Hybrid Architecture for Consolidating Mixed 
Criticality Applications on Multicore Systems,” in 2015 IEEE 21st 
International On-Line Testing Symposium, 2015, pp. 26–29. 

[2] H. Madeira, D. Costa, M. Vieira, “On the emulation of software faults by 
software fault injection”, Dependable systems and networks 2000, DSN 
2000, Proceedings Internetional Conference on. IEEE, 2000. 

[3] Prisaznuk, Paul J. "Integrated modular avionics." Aerospace and Electronics 
Conference, 1992. NAECON 1992., Proceedings of the IEEE 1992 National. 
IEEE, 1992. 

[4] ARINC Specification 653: Part 1, Avionics Application Software Standard 
Interface, Required Services, ARINC653P1, 2010 

[5] ARINC Specification 653: Part 2, Avionics Application Software Standard 
Interface, Extended Services, ARINC653P2, 2012  

[6] ARINC Specification 653: Part 3A, Avionics Application Software Standard 
Interface, Conformity Test Specification, ARINC653P3A, 2014  

[7] ARINC Specification 653: Part 4, Avionics Application Software Standard 
Interface, Subset Services, ARINC653P4, 2012  

[8] ARINC Specification 653: Part 5, Avionics Application Software Standard 
Interface, Core Software Recommended Capabilities , ARINC653P5, 2014  

[9] P.J. Prisaznuk, “ARINC 653 role in integrated modular avionics (IMA)." 
Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th. 
IEEE, 2008. 

[10] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Software-
implemented Hardware Fault Tolerance”, Springer Science & Business 
Media, 2006. 

 

 


