
A comparison between Hardware and Software

Solutions for Resource Partitioning in Multicore-based

Mixed Criticality Applications

Stefano Esposito, Sehriy Avramenko,

Massimo Violante

Dipartimento di Automatica e Informatica

Politecnico di Torino

Torino, Italy

stefano.esposito@polito.it

sehriy.avramenko@polito.it

massimo.violante@polito.it

Marco Sozzi, Massimo Traversone

Selex ES (now Finmeccanica)

Nerviano, Italy

marco.sozzi@finmeccanica.it

massimo.traversone@finmeccanica.it

Marco Binello, Marco Terrone

Alenia Aermacchi (now Finmeccanica)

Torino, Italy

marco.binello@finmeccanica.it

marco.terrone@finmeccanica.it

Abstract—The paper proposes a comparison between hardware

and software solutions for resource partitioning in the scenario of a

multi-core based mixed criticality application. A reference avionic

application has been implemented in two versions: one using a

software partitioning solution and one using a hardware partitioning

solution. Both versions of the system have been evaluated using fault

injection simulation experiments. Results show that the hardware

solution can provide better isolation with respect to the software

solutions when soft errors affecting processor memory elements are

considered. Conversely, when software defects are of concerns, the

two solutions provide the same level of robustness.

Keywords—- avionic; multi-core; mixed-criticality; consolidation;

fault-tolerance; system-on-programmable-chip (SoPC); hypervisor

(HV); intellectual property (IP); critical partition (CP); critical

application (CA); non-critical partition (NCP); non-critical application

(NCA); system watchdog timer (SWDT); watchdog (WD); single event

upset (SEU); software bug (SwB)

I. INTRODUCTION

Multicore architectures have been on the market for
several years now, and have acquired a clear dominant
position. Chip manufacturers are already focused on
development and production of multicore chips and are
advancing towards ever more complex and performant
many-core architectures. Whereas many industries can
only benefit from more performant architecture, e.g.
consumer electronics, several other industries are
struggling with the adoption of such architecture,
mainly due to safety regulations and certifications
concerns. Such concerns are mainly tied to the
challenging problem of certifying a safety-critical
system implemented on a multicore architecture
according to international regulation prescriptions. In
the avionics industry, one of the goals of multicore
introduction is the reduction of Space, Weight and
Power (SWaP) consumed by avionic equipment,
through consolidation of several applications on a
single multicore chip. This field of research is very
active, and the main avionics players are highly
interested in solving the problem since, to the best of
our knowledge, no solution has been widely accepted
yet.

One of the many challenges in the path towards the
definition of a reference architecture for consolidating
mixed criticality applications on multicore
architectures is resource partitioning. Since two or

more applications use a single processing unit (PU),
they can virtually access everything is connected to that
PU. However, in many applications, this is neither
necessary nor desirable, since it may affect the system
safety: the misuse of some resources by one particular
application may led to starvation on all other
applications in the system, which in turn means a
potentially catastrophic misbehavior (e.g., an
application locking forever a shared resource may lead
other applications to miss hard real-time deadline). To
solve the partitioning problem, two main solutions have
been proposed. A first solution consists in software
partitioning, which is implemented by means of a
special software layer called type-1 hypervisor: in this
solution applications are separated by means of MMU
configuration and processor scheduling; the second
solution consists in hardware partitioning, which
leverages special-purpose hardware units available in
multicore processors that allow enforcing resource
access policies for each core.

In this paper the application described in [3] is
implemented in two versions: one based on a type-1
hypervisor and one based on a hardware partitioning.
The reliability of the two implementations is then
evaluated by means of fault-injection simulations,
considering two fault models: single-event-upsets in
the processor registers and in the configuration
registers of the target hardware were used to model
transient hardware faults, while random bit-flips in the
instruction memory were used to model software bugs,
as proposed in [4]. Results gathered on a Xilinx Zynq
system-on-programmable-chip (SoPC) show that the
considered hardware solution is more robust with
respect to hardware faults, guaranteeing a better
partition than the software solution. Conversely, the
two techniques provide the same degree of robustness
when software bugs are considered.

This paper is organized as follows. Section II reports
a brief overview of the state-of-the-art; section III
presents the architecture used in the experiments;
section IV discusses the results we gathered on both
implementations, while section V draws some
conclusions and outlines future steps.

mailto:stefano.esposito@polito.it
mailto:sehriy.avramenko@polito.it
mailto:massimo.violante@polito.it
mailto:marco.sozzi@finmeccanica.it
mailto:massimo.traversone@finmeccanica.it
mailto:marco.binello@finmeccanica.it
mailto:marco.terrone@finmeccanica.it

II. PREVIOUS WORKS

 Consolidation of several mixed criticality
applications has been a goal for avionics for several
years. In the past this goal brought to the development
of architectural solutions like the Integrated Modular
Avionics (IMA). IMA is a design concept by which
several hardware resources are tightly controlled by
software and can be shared among several applications,
achieving a high level of integration [3]. In line with the
IMA design concept, the Airlines Electronic Engineers
Committee (AEEC) developed and adopted the
ARINC653 standard[4][5][6][7][8]. ARINC653 is a
standard for services to be provided by a Real Time
Operating System (RTOS) to an avionic application.
ARINC653 standardization helped reuse of avionic
software and simplified its development process.
ARINC653 is defined in several documents, however
an outline is presented in [9]. ARINC653 always refers
to systems implemented on single core architectures.

In [1] a novel architecture was proposed to perform
preliminary studies on the mixed-criticality
applications consolidation on a multicore system in an
avionic scenario. The architecture was implemented
using a type-1 hypervisor and results show it to be a
promising starting point for building a robust multi-
core based avionic architecture. In this paper the same
architecture is implemented resorting to a dedicated
hardware partitioning solution available in the multi-
core processor used for our experiments.

III. ARCHITECTURE DESCRIPTION

The architecture proposed in [1] implements a
mixed criticality application on a multi-core chip with
a companion Field Programmable Gate Array (FPGA).

A. Conceptual architecture

From a hardware point of view, the architecture
relies on a dual-core processor with a watchdog timer,
called System Watchdog Timer (SWDT) in the
following, and two instances of a Watchdog processor
(WDP), called WDP0 and WDP1. Each WDP is
associated to a core of the processor, and it implements
a Control Flow Check (CFC) strategy. Receiving a
sequence of signatures from the software running on
the associated core, WDP checks that the time interval
between two subsequent signatures is within a
predefined max time interval and that the received
signatures are in a predefined expected sequence. This
architecture includes two applications with different
criticality levels, each deployed in its own partition
bounded to one processor core and a subset of the
available hardware resources (i.e., memory and I/O
devices). In this paper we refer to a high criticality
application (HCA), that is an application that is safety
critical, and a low criticality application (LCA), that is
not safety critical. The system includes a Critical
Partition (CP) hosting the high criticality application, a
Non-Critical Partition (NCP) hosting the low criticality
application, and a System Partition (SP), which is in
charge of managing error detection and recovery. In the
scenario analyzed in this paper, there is no information
exchange between the two applications.

Fig. 1. Conceptual scheme of the architecture, showing hardware and software

components.

The watchdogs in the system are allocated to each
application as follows: WDP0 is allocated to the CP,
WDP1 is allocated to the NCP, SWDT is allocated to
the CP. The SP handles both WDPs’ Interrupt Requests
(IRQs). In response to the WDP1’s IRQ the NCP is
rebooted, whereas in response to a WDP0’s IRQ, the
whole system is rebooted and a reconfigure signal is
activated on the interface of the architecture. This
signal can be used in a hot-standby sparing
configuration so that the spare computer can take over
functionalities of the malfunctioning computer. The
SWDT triggers a system reset entirely managed in
hardware, and it also sends the reconfigure signal to the
interface. Fig. 1 shows the conceptual architecture
described so far.

B. Architecture implementation using a type-1

hypervisor

The architecture we developed was implemented
using a type-1 hypervisor. When using a type-1
hypervisor as partitioning solution, the mapping of the
conceptual architecture is rather straightforward, with
the addition of a significant software layer running in
Symmetric Multi-Processing (SMP) on the underlying
multi-core processor.

The type-1 hypervisor implements the partitioning
through memory segmentation enforced by means of
Memory Management Unit (MMU). The mapping of
the conceptual architecture to the type-1 hypervisor’s
partitioning scheme is showed in Fig. 2. In this scheme,
each of the applications partitions is mapped to one of
the two cores, while the SP can run on any core when
an interrupt is received, in order to reduce latency.

C. Architecture implementation using an hardware

patitioning solution

For the sake of this paper, we adopted ARM
TrustZone as hardware partitioning mechanism, which
allows defining two partitions. The TrustZone
partitions are called Secure World and Non-Secure
World respectively. The Secure World has all the
privileges and is able to access all hardware resources,
whereas the Non-Secure World can only access
resources that have been explicitly allocated to it. The
Secure World is in charge of allocating some of the
hardware resources to the Non-Secure World. Any
access from the Non-Secure World to a forbidden
hardware resource results in a hardware exception to be
managed in the Secure World context.

Fig. 2. Scheme of the architecture implemented using a type-1 hypervisor.

In the following the two partitions are called Secure
World and Non-Secure World, to adhere to the
TrustZone terminology. Core 0, SWDT, and WDP0
were allocated to the secure world, whereas Core 1, and
WDP1 were allocated to the non-secure world. Fig. 3
presents the resulting architecture scheme.

IV. EXPERIMENTS AND RESULTS

A. Target Hardware

The architecture was deployed on the same
hardware in both implementations. The selected
hardware was a Zynq SoPC (System-on-
Programmable-Chip), featuring a dual core ARM
Cortex-A9 processor and an FPGA fabric on the same
chip where the SWDT was implemented through a hard
IP core already available in the SoPC, while WDPs
were implemented as soft IP cores in the FPGA, as
described in [1].

B. Experimental setup

We used fault injection simulations to evaluate the
robustness of the two implementations, as described in
the following.

1) The benchmark applications
Both implementations were running similar

benchmark software composed of two avionic
applications. The benchmark applications are part of
the Flight Management System (FMS) of a prototype
of an Unmanned Aerial Vehicle (UAV) implemented
by Alenia Aermacchi and shared in the scope of the
EMC2 project. One of the two applications is a high
criticality application and was mapped on the critical
partition of the conceptual architecture described in
section III, while the other (implementing a house-
keeping task) was mapped on the non-critical partition.

C. Fault Injection Simulations

Both system implementations’ reliability was
evaluated through fault injection simulations. The
following terminology is used:

 Fault Injection Simulation or Simulation: a
single fault is injected in the system in a
single execution of the benchmark starting
from reset state.

 Fault Injection Simulation Campaign or
Campaign: a collection of fault injection
simulations.

Each fault injection simulations campaign is
characterized by a list of faults to be injected, referred
to as the fault list.

Fig. 3. Scheme of the architecture implemented using the TrustZone. Different

tonalities in the hardware components are used to show the assignment of
the resource to secure world (dark) or non-secure world (light).

1) Fault List Generation
The fault list is generated by random sampling of a

fault space containing all the faults that can occur
during a single run of the benchmark. The complete
space is too big to allow an exhaustive testing of the
system, thus the necessity to operate a random
sampling. To obtain a meaningful fault list, faults that
could not have an effect were pruned from the fault
space. Moreover, only faults affecting the core running
the LCA were considered, as the goal of this evaluation
was to prove that a misbehaving LCA would not affect
the HCA. Cardinality of the final sampling from the
pruned fault list has been determined through a
Montecarlo approach, observing that beyond the
selected cardinality the measured average did not
change significantly.

2) Fault classification
The faults were classified comparing the outputs of

faulty executions with the expected outputs, gathered at
the end of a fault-free execution. Faults were classified
as follows:

 Silent (S): a fault that did not have any effect
on the outputs of the HCA, nor caused a
deadline miss.

 Timeout (TO): a fault that caused a timeout
in the SWDT, triggering a system reset.

 Failure (F): a fault that caused a
misbehavior in the HCA, i.e. wrong outputs
or a missed deadline.

D. Fault Injection Simulations

Hardware faults were simulated, by injecting single
bit flips in memory elements within the system. Target
memory elements were CPU registers and
configuration registers. Software bugs were simulated
through random bit flips in the code memory area
before execution started. Finally, a bug was introduced
in the LCA that simulated a case of resource misuse,
forcing LCA to saturate the shared memory bus, to
evaluate HCA performance penalty.

1) Hardware Fault Injection Simulation and results
Hardware fault injection simulations were

performed as follows. First, the system was booted and

an external debugger stopped execution at the
beginning of the main loop. Then execution was
continued for a given amount of time, until the injection
time was reached, then the execution was stopped and
the fault injected through the debugger. Finally,
execution was completed and results downloaded to a
host workstation, in charge of fault classification.
Results are reported in Table 1.

TABLE I. HARDWARE FAULT INJECTION SIMULATIONS RESULTS

 SILENT TIMEOUT FAILURE INJECTED

TYPE-1 HYPERVISOR 5.726 274 0 6.000

HARDWARE

PARTITIONING
5.959 41 0 6.000

Results show that the hardware solution achieves
better results, due to the absence of the hypervisor
software layer, which is a single point of failure.

2) Software Fault Injection Simulation and results
The software fault injection was used to simulate

effects of a software bug as proposed in [2].
Simulations were performed in the same way as
described above, with the exception that the fault was
injected in the code memory are before execution
started. Results are reported in Table 2. Results show
that HCA is completely immune to software bugs
affecting LCA.

TABLE II. SOFTWARE FAULT INJECTION SIMULATIONS RESULTS

 SILENT TIMEOUT FAILURE INJECTED

TYPE-1 HYPERVISOR 10000 0 0 10000

HARDWARE

PARTITIONING
10000 0 0 10000

TABLE III. PERFORMANCE PENALTY FOR THE HCA WHEN THE LCA

SATURATED THE MEMORY BUS.

 L1 CACHE IN

NCP
HCA PERF. PENALTY

TYPE-1 HYPERVISOR ON 4.03 %

OFF 4.08 %

HARDWARE

PARTITIONING
ON 4.12 %

OFF 4.52 %

3) Resource misuse by LCA
In this simulation, a fault was injected that caused

the LCA to continuously access random memory

locations in both reading and writing operations, thus
saturating the shared memory bus. This simulation
targets only effects of the shared memory bus
congestion. Memory content corruption side effect has
been avoided by simulation design.

 Table 3 shows HCA performance penalty in terms
of execution time, both when the L1 cache in the NCP
was turned on and off. The software benchmark
configuration in this simulation was modified in order
to avoid that L1 cache in the CP could mask the faulty
behavior of the LCA. Results show a similar
performance penalty in both implementations.

V. CONCLUSIONS

This paper implemented the architecture proposed
in [1] with two partitioning solutions, one implemented
through software, the other implemented through
hardware. Both implementations’ reliability was
evaluated using fault injection simulations. Results
suggest that the hardware-implemented resource
partitioning provides better protection of the critical
application against soft errors that may affect the multi-
core hardware. Conversely, when software defects are
considered (such as misbehavior in the not-critical
application that caused it to saturate the memory bus)
results show that the two implementation provide
comparable results.

ACKNOWLEDGMENTS

The research was partially supported by the
ARTEMIS Joint Undertaking project in the Innovation
Pilot Programme “Computing platforms for embedded
systems” (AIPP5) under grant agreement n. 621429
(project EMC²).

REFERENCES

[1] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M.
Binello, and M. Terrone, “An Hybrid Architecture for Consolidating Mixed
Criticality Applications on Multicore Systems,” in 2015 IEEE 21st
International On-Line Testing Symposium, 2015, pp. 26–29.

[2] H. Madeira, D. Costa, M. Vieira, “On the emulation of software faults by
software fault injection”, Dependable systems and networks 2000, DSN
2000, Proceedings Internetional Conference on. IEEE, 2000.

[3] Prisaznuk, Paul J. "Integrated modular avionics." Aerospace and Electronics
Conference, 1992. NAECON 1992., Proceedings of the IEEE 1992 National.
IEEE, 1992.

[4] ARINC Specification 653: Part 1, Avionics Application Software Standard
Interface, Required Services, ARINC653P1, 2010

[5] ARINC Specification 653: Part 2, Avionics Application Software Standard
Interface, Extended Services, ARINC653P2, 2012

[6] ARINC Specification 653: Part 3A, Avionics Application Software Standard
Interface, Conformity Test Specification, ARINC653P3A, 2014

[7] ARINC Specification 653: Part 4, Avionics Application Software Standard
Interface, Subset Services, ARINC653P4, 2012

[8] ARINC Specification 653: Part 5, Avionics Application Software Standard
Interface, Core Software Recommended Capabilities , ARINC653P5, 2014

[9] P.J. Prisaznuk, “ARINC 653 role in integrated modular avionics (IMA)."
Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th.
IEEE, 2008.

[10] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Software-
implemented Hardware Fault Tolerance”, Springer Science & Business
Media, 2006.

