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Abstract—The development of today’s complex systems 

requires the use of a variety of different tools. In order to 

efficiently and effectively handle the complexity of the 

development process, the tools have to collaborate in a seamless 

way. Interoperability and openness are getting more crucial than 

ever before. The project CRYSTAL (CRitical sYSTem 

engineering AcceLeration) has identified this need and aims for 

an Interoperability Specification (IOS) as an open European 

standard for the development of safety-critical embedded 

systems. The IOS comprises existing open specifications and 

provides extensions wherever necessary.  

In this paper, we describe our experiences with the 

application of the Crystal IOS in an automotive use case.  We will 

show the engineering activities which are supported by our tool 

chain and how we are trying to achieve a seamless integration of 

the involved tools. As a conclusion, we report some of our 

experiences in the implementation of this use case.  

Keywords—seamless tool integration; open specifications; 

interoperability ;OSLC;  

I.  INTRODUCTION 

The processes of developing, deploying, governing, 
operating and maintaining modern safety-critical embedded 
systems is highly complex and requires specialized tools 
supporting different activities throughout the entire product life 
cycle. Therefore, OEMs and suppliers are typically operating a 
large set of tools from different vendors often complemented 
by custom in-house solutions. The overall process can be 
effective and efficient only, if it supports collaboration among 
all stakeholders and consequently interoperability between the 
tools they are using. Considering the ongoing outsourcing and 
globalization activities, interoperability and openness is getting 
even more crucial. In addition, the demand for supporting a 
large number of product variants further increases the 
complexity to be handled. 

Today, tool integration is often done in an ad-hoc manner 
by creating proprietary bridges between each pair of tools. 
Such an approach does not scale, since the number of required 
bridges grows exponentially with the number of employed 
tools. Moreover, the resulting tool chain becomes extremely 
vulnerable to common changes like version upgrades from tool 
vendors, and the efforts for maintaining a large set of bridges is 
sooner or later no more acceptable. The main technical 
challenge in addressing this problem is the provision of open 

and common interoperability technologies supported by the 
different tools that generate and provide access to data covering 
the entire product lifecycle. 

The project CRYSTAL (CRitical sYSTem engineering 
AcceLeration) has identified this need and takes up the 
challenge to establish and push forward an Interoperability 
Specification (IOS) as an open European standard for the 
development of safety-critical embedded systems in the 
automotive, aerospace, rail and health care domain. This 
standard will allow loosely coupled tools to share and interlink 
their data based on standardized and open technologies that 
enable common interoperability among various life cycle 
domains. This reduces the complexity of the entire integration 
process significantly. CRYSTAL is strongly industry-oriented 
and will provide ready-to-use integrated tool chains having a 
mature technology-readiness-level (up to TRL 7). In order to 
reach this goal, CRYSTAL is driven by real-world industrial 
use cases from the automotive, aerospace, rail and health sector 
and builds on the results of successful predecessor projects like 
CESAR, SAFE, iFEST, MBAT on European and national 
level. 

Creating and establishing a new standard on a large scale in 
an already consolidated market cannot be achieved by small 
individual organizations. With a budget of more than 82 
million Euro and 68 partners from 10 different European 
countries, CRYSTAL has the critical mass to accomplish this 
endeavor. The project consortium is made up of participants 
from all relevant stakeholders, including OEMs, suppliers, tool 
vendors and academia. 

Here, we will describe one of the industrial use cases from 
the automotive domain which is driven by AVL. AVL aims for 
an open integration of its own tools with tools from other 
vendors to enable seamless interoperability throughout the 
development process for their customers. In the remainder of 
this paper, we will focus on the different engineering activities 
that are supported by our tool chain and how we are using open 
standards to foster interoperability. This paper is structured as 
follows: Sec II. introduces the used specifications and provides 
some references to related work. Sec III. describes the 
engineering activities that should be supported by the actual 
tool chain. The tools and interoperability specifications that 
build up the tool chain are highlighted in Sec IV. Sec V finally 
concludes the paper with some lessons learned.  



II. BACKGROUND AND RELATED WORK 

This section introduces the most relevant specifications of the 

Crystal IOS[1]. 

A. OSLC  

Open Services for Lifecycle Collaboration (OSLC) [2] is an 

open community that creates specifications for integrating 

tools based on standardized and well-known web technologies 

such as Hypertext Transfer Protocol (HTTP), the Resource 

Description Framework1 (RDF), and the Uniform Resource 

Identifier (URI). 

It makes use of the linked data principles defined by Tim 

Berners-Lee2:  

 Use URIs as names for things 

 Use HTTP URIs so that people can look up those 

names 

 When someone looks up a URI, provide useful 

information, using the standards (RDF*, SPARQL) 

 Include links to other URIs, so that they can discover 

more things. 

 
OSLC consists of a core specification [3] and a set of 

domain specifications. The core specification defines essential 
properties, behavior, and services that expand the W3C Linked 
Data concept3 and enables the integration of tools. 
Additionally, domain specifications are created and maintained 
by specific working groups in order to support a common 
vocabulary. These specifications include requirements 
management, change management, architecture management, 
quality (test) management, and asset management. The base for 
these specifications are concrete use case scenarios. The 
scenario-based approach ensures that the specifications only 
contain a minimal set of domain properties, because OSLC 
promotes the idea of a stable standard which specifies just 
enough for realistic integration scenarios. 

Data integration with OSLC mainly consists of two parts: a 
provider, which is responsible for managing and providing data 
via a web service, and a consumer, which is able to request and 
manipulate (Create, Update, Delete) data. In order to be able to 
communicate, provider and consumer have to comply with the 
same specification. There is no need to change the data model 
or the tool behavior. Consumers can create links between 
OSLC resources by embedding the URL of the related OSLC 
resource as a property of the resource itself. OSLC providers 
can store the link information in a tool independent format 
which enables traceability beyond different tools.  

Experiences of the application of OSLC in different 
application scenarios have been reported by several authors [4, 
5, 6]. Biehl et. al [7] furthermore describe an approach for the 
automatic generation of OSLC adapters in order to overcome 
the cumbersome and recurring implementation work for the 
common parts of an adapter. We have not used a generation 
approach for our implementation, instead we are relying on the 

                                                           
1 http://www.w3.org/RDF/ 
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existing frameworks Eclipse Lyo4 for Java and OSLC4net5 for 
C#.  

B. Functional Mockup Interface (FMI) 

The FMI standard currently evolves itself to be the standard 
for co-simulation (so far there has been none). FMI standard 
version 1.0 (see [8]) was published in 2010 as one result of the 
ITEA2 project MODELISAR. FMI 2.0 followed in July 2014. 
The FMI 2.0 standard [9] consists of two main parts: (1) FMI 
for Model Exchange with the intention to provide generated C-
Code of a dynamic system model in the form of an input/output 
block that can be utilized by other modeling and simulation 
environments. Models (without solvers) are described by 
differential, algebraic and discrete equations with time-, state- 
and step-events.  (2) FMI for Co-Simulation with the intention 
to couple two or more models with solvers in a co-simulation 
environment. The subsystems are solved independently from 
each other by their individual solver - data exchange between 
subsystems is restricted to discrete communication points. Data 
exchange and the synchronization of the slave simulation 
solvers is controlled by master algorithms between subsystems 
and. FMI allows standard, as well as advanced master 
algorithms, e.g., the usage of variable communication step 
sizes, higher order signal extrapolation, and error control.   

A component implementing the FMI standard is called 
Functional Mockup Unit (FMU).  A FMU is a zip-file with 
extension “.fmu” which contains all necessary components to 
utilize the FMU (for co-simulation): (a) An XML-file 
containing the definition of all exposed variables of the FMU, 
as well as other model information. It further includes a slave-
specific XML-file with relevant information for the 
communication, e.g. flag indicating the ability of the slave to 
support advanced master algorithms (e.g. the usage of variable 
communication step sizes, higher order signal extrapolation, or 
others). (b) A small set of easy to use C-functions to  initiate  
the  communication  with  a  simulation  tool,  to  compute  a 
communication time step, and to perform the data exchange at 
the communication points are provided in  source  and/or  
binary  form. (c) Further data can be included in the FMU zip-
file (e.g. a  model  icon  (bitmap  file),  documentation files, 
maps and tables needed by the model,  and/or  all  object  
libraries  or  DLLs  that  are utilized). Several publications 
show the application of FMI [10,11]. 

C. ASAM ODS 

ASAM (Association for Standardization of Automation and 
Measuring Systems) is an association that coordinates the 
development of technical standards especially in the field of 
measurement, calibration and test automation. It supports the 
vision that tools can be freely interconnected to allow a 
seamless exchange of data throughout the development 
process. The standards define protocols, data models, file 
formats and application programming interfaces (APIs) for the 
use in the development and testing of automotive electronic 
control units. ODS (Open Data Services) [12] is one of these 
standards and focuses on the persistent storage and retrieval of 
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testing data. The standard is primarily used to set up a test data 
management system on top of test systems that produce 
measured or calculated data from testing activities. A typical 
scenario for ODS in the automotive industry is the use of a 
central ODS server, which handles all testing data produced by 
vehicle test beds. The major strength of ODS as compared to 
non-standardized data storage solutions is that data access is 
independent of the IT architecture and that the data model of 
the database is highly adaptable yet still well-defined for 
different application scenarios.  

III. SUPPORTED ENGINEERING ACTIVITIES 

The considered use case consists of 5 engineering activities. 
An engineering activity can be seen as a typical activity of an 
engineer, which should be supported by a tool chain.  

A. Formalize Requirements 

The major purpose of this engineering activity is to derive 
(semi-)formal, machine-processible requirements from natural 
language requirements. The term semi-formal here refers to the 
fact that the notion not necessarily has strictly defined 
semantics. Currently, tools such as HP Quality Center, PTC 
Integrity or Excel are typically used to manage natural 
language requirements.. In our use case we are evaluating three 
methods to semi-formalize them: SysML requirement profiles, 
sequence chart-based techniques, and boilerplate techniques 
based on domain-specific languages.  

As a precondition, we assume that natural language 
requirements are available and stored in a requirement 
management tool (e.g. HP QualityCenter). We consider vehicle 
requirements, testing requirements, as well as legal 
requirements (modeling of selected parts of the WLTP 
emission legislation). The engineering activities are then 
comprised of the following steps: 

 Reading natural language requirements from a 
requirement management tool into a requirement 
formalization tool. 

 The requirements engineer derives semi-formal 
requirements by means of the formalization tool. 
One natural language requirement can be 
represented by n semi-formal requirements. 

 The semi-formal requirements are stored in the 
requirements management tool. 

 Each semi-formal requirement is linked to its 
corresponding natural language requirement. 

Consequently, the post-condition of these steps is that the 
semi-formal requirements are stored and interlinked 
accordingly. 

B. Heterogeneous Simulation 

Heterogeneous simulation (also called co-simulation) 
describes the ability to couple two or more simulation models 
executed in different tools at run-time. This is quite important 
since the simulation tool landscape is usually very 
heterogeneous and a typical development process involves 

several domain-specific modeling and simulation tools. 
However, it is important to enable a holistic system simulation 
already at an early stage of development. Development 
frontloading ensures that system integration can already be 
tested in the simulation phase.  

A simple example of a co-simulation consists of and engine 
model and a functional model that describes the control 
algorithms of the engine’s ECU. Both models are created using 
dedicated modeling and simulation tools. Here, it is helpful to 
have the possibility to couple the two models in order to get 
feedback about their interactions.  

The engineering activity assumes that the simulation 
models have already been created. It consists of the following 
steps:  

 Appropriate simulation models are selected based 
on the requirements.  

 The simulation models are coupled (connecting 
input and output signals). 

 The co-simulation is configured (step-size, 
simulation time, and so on). 

 The co-simulation is executed.  

 The simulation results are stored in a dedicated 
database.  

C. Heterogeneous Real-Time Simulation 

Heterogeneous real-time simulation is quite similar to the 
previous engineering activity, but with the additional 
requirement of real-time capabilities. At a certain point in the 
development process, simulation models are replaced by 
physical components. Taking the example from above, we 
would now like to couple the functional model with a real 
engine on an engine test bed. These means that the models as 
well as the interfaces (data exchange) need to be real-time 
capable.  

The engineering steps for this activity can be described as 
follows.  

 The co-simulation configuration of the 
heterogeneous simulation (in office) can be 
reused.  

 The simulation model which is available as 
physical component now can be replaced by a 
placeholder for this component.  

 Non-real-time simulation models have to be 
exchanged by real-time capable versions.  

 The models, model parameters, and the coupling 
information should be exported.  

 This information will then be used for the 
configuration of the test bed.  

 The simulation models can be executed together 
with the physical component on the test bed.  



 The measurement results are stored in a dedicated 
data base.    

D. Validate Design against Requirements 

The purpose of this engineering activity is the validation of 
a system design with respect to requirements based on 
simulation (or testing on a testbed).  

The pre-condition for this activity is that the requirement 
formalization activity has been finished and the semi-
formalized requirements are stored and accessible. 
Furthermore, test cases have been defined (in a test 
management tool), linked to requirements, and executed. A test 
case here basically describes a simulation run. The test results 
(i.e. simulation results) are stored and accessible. 

The engineering activity is comprised of the following 
steps: 

 Select a test case in the validation tool. 

 Read all requirements which are linked to the 
selected test case from the requirements 
management tool into the validation tool. 

 The validation tool analyses the simulation or 
measurement results and compares them to the 
formalized requirement limits. 

 Validation results (i.e. passed or failed for all 
checked requirements) are generated – optionally 
with some addition information (such as failure 
reason, detected deviation from limits, etc.). 

 The validation results are stored as annotations in 
the requirement management tool. 

E. Linking Calibration and Measurement Data 

For this engineering activity, we assume that a customer 
requests the calibration of an engine according to a specific 
norm (e.g. Euro56). This can be seen as the calibration goal. As 
a result of this engineering activity, calibration and 
corresponding measurement data are linked in order to 
reproduce the measurement results for each calibration data set. 
This enables the evidence for certification (proof that emission 
norm is fulfilled). 

As a prerequisite we assume that the initial data (A2L and 
HEX file) has been imported in the calibration data 
management tool.   

The engineering activity consists of the following basic 
steps: 

 Project manager assigns calibration tasks (represented 
in a .dcm file) to calibration engineers. The calibration 
is usually not done by one person, because it involves 
thousands of calibration parameters. These parameters 
are packaged in several .dcm files, each containing a 
logically related set of calibration parameters. 

                                                           
6https://www.theaa.com/motoring_advice/fuels-and-

environment/euro-emissions-standards.html 

 Calibration engineers perform calibration tasks and 
test the setting in a test run. The measurement results 
of this test run are stored in a record file. 

 Record files are stored in a dedicated ASAM ODS 
database. 

 Link calibration data (DCM file) to measurement 
results (record file). 

IV. TECHNICAL REALIZATION 

This section describes the realization of the tool chain 
based on open standards wherever possible and meaningful. 
Figure 1 illustrates the  considered tool chain.  

A. Formalize Requirements 

As mentioned before, we are evaluating different 
approaches for requirement formalization. Here we are 
focusing on the realization using the boilerplate approach. 
More information about the sequence chart-based techniques 
can be found in [13]. The tools involved in this integration 
scenario are HP Quality Center (HPQC) for requirements 
management and Refine – a prototype implementation of the 
boilerplate-based approach. Refine is an Eclipse-based 
prototype built upon the Xtext7 framework. Xtext supports the 
creation of textual domain-specific languages. In the Crystal 
project, VIF has defined a requirements specification grammar. 
The resulting domain-specific requirements language supports 
the requirements engineer in writing “good” requirements. 
More detailed information about the tool and the language can 
be found in [14]. 

Xtext has not only the advantage that the editor and many 
useful features are generated automatically, it furthermore 
provides advanced parsing capabilities. We use these 
capabilities to extracts min/max values from the requirements. 
This information is then used in the follow-up engineering 
activity.  

In this engineering activity, interoperability is supported by 
OSLC. AVL has implemented a prototype OSLC RM Provider 
for HPQC. This provider supports CRUD (create, retrieve, 
update and delete) services for Requirements. Refine 
implements a consumer interface that supports the import of 
natural language requirements, the export of semi-formal 
requirements, and the update of natural language requirements 
with the respective link information. The OSLC interface has 
been implemented to support consistency checks. 

                                                           
7 https://eclipse.org/Xtext/ 



B. Heterogeneous Simulation 

For heterogeneous simulation, we are using the AVL 
product Model.CONNECT. Some of the tool features (e.g. 
FMI execution) have been developed in the context of Crystal- 
Model.CONNECT is a platform to set up and execute system 
simulation models, which are composed of subsystem and 
component models from multiple model authoring 
environments. Models can be integrated based on standardized 
interfaces (FMI) as well as based on specific interfaces to a 
wide range of well-known simulation tools. Model.CONNECT 
supports the user in organizing system model variants. These 
variants may describe different configurations of the system 
under investigation as well as different testing scenarios and 
testing environments. 

Model.CONNECT can be used as follows: The first step in 
the setup of a simulation is to add model templates into a 
system (i.e. model interfaces and input elements such as signal 
table). As a next step, the concrete models and configurations 
are added to the templates.  After inserting the data into the  

 

model elements and defining the port units, the elements 
need to be connected so that they can communicate with each 
other. One input can be connected to only one output, while 
one output can be connected to one or more inputs. In order to 
use this setup to perform the actual simulation, several 
additional steps are needed, i.e. defining the simulation time, 
setting the simulation properties, configuring the monitoring 
view, etc.  

The results of a simulation can be exported into AVL 
Santorin. AVL Santorin is a tool for measurement result 
management and adheres to the ASAM ODS standard. 

C. Heterogeneous real-time Simulation 

For this engineering activity we want to reuse as much 
information as possible from the previous heterogeneous 
simulation step. With this, consistency in the vehicle 
development process is ensured by reusing simulation models 
and model configurations from the office at the testbed. 

AVL ARTE.Lab™ can be used to create real-time FMU’s. 
These real-time FMUs can be used in Model.CONNECT by 
simply replacing the non-real-time FMU. The interconnection 
information (configuration), the simulation models and the 

 
 

Figure 1: Overview of the  toolchain 

 



model parameters are stored in a zip-file which then is used for 
the preparation of the test bed. Using the central access point 
for parameterization of the testbed, the AVL Navigator, the 
zip-file is stored in the AVL SANTORIN database and can 
then be rolled out in the test field. The installation and 
deployment of the models, the parameters and the model 
configuration is done automatically. The traceability and 
reproducibility is ensured by using the same workflow and 
storage location as for other testbed parameters. The AVL 
Navigator framework with AVL Santorin enables the 
versioning of the stored parameters and model configurations. 

D. Validate Design against Requirements 

The tools used for this engineering activity are mainly HP 
Quality Center, AVL VeVaT /Magic, and AVL Santorin.  

AVL VeVaT is a Verification & Validation Tool for 
various software products or software modules which generate 
voluminous numerical output – e.g. numerous single result 
values and/or huge sequences of numerical values (e.g. multi-
channel time history data). It provides two approaches for 
checking the correctness of its numerical output data:  

 Comparison of actual output data to already validated 

reference output data (mainly used for regression 

tests, where output data of a new product version get 

compared to validated data of a preceding software 

release) 

 Detecting/deriving significant properties of output 

data (time history data) and compare them to 

numerical product requirements (e.g. deriving 

properties of a vehicle braking event from road 

measurement data and checking, whether e.g. braking 

time, braking distance, deceleration, ABS- influences 

etc. reside within required limits). 

 
AVL VeVaT generates validation reports, which supply 

passed/doubtful/failed validation statements at several 
hierarchy levels, i.e. an overall statement and more detailed 
statements for subsections of analyzed data. It works on top of 
AVL Magic, which imports measurement or simulation values 
for the actual post-processing.  

The integration for this scenario is twofold: First VeVaT 
reads and updates requirement and test case information using 
an OSLC interface. Simulation results are stored in ASAM 
ODS format and can be exported in the standardized ASAM-
ODS ATF/X file format.  

AVL VeVaT implements an OSLC consumer interface for 
Requirements and Test Cases. As a first step the user can select 
a test case. Test cases are defined in HPQC and can be 
retrieved using an OSLC QM interface. The OSLC QM 
provider for HPQC has been implemented by AVL for the 
Crystal project and does provide only the required 
functionality. Once the user has selected a test case, he can read 
all the requirements which are linked to this test case from HP 
Quality Center.  

AVL VeVaT now has all the requirements for the selected 
test case together with the validation parameters (defined in the 

Formalize Requirements engineering activity). After the actual 
validation step, the requirements now have the validation 
results (passed/failed information) assigned to them. This 
information is written back to HPQC using OSLC.  

E. Linking Calibration and Measurement Data 

In order to establish a link between the calibration and 
measurement data, a tool called AVL Navigator is used. This 
tool can basically be understood as a viewer on different 
databases. Therefore it is possible to browse measurement data 
and calibration data, but so far it was not possible to establish 
links and to navigate between the different types of data. The 
integration of calibration data in the AVL navigator has been 
realized using OSLC. The calibration management tool AVL 
Creta implements an OSLC provider interface for Assets. AVL 
navigator is implementing the corresponding consumer 
interface. It is now possible to link a selected DCM file to a test 
record.  

V. LESSONS LEARNED AND CONCLUSION 

The described tool chain has been set up in a prototypical 
way. We have shown that the open specifications of the Crystal 
IOS cover a broad range of automotive engineering activities. 
Nevertheless, we also experienced that the practical application 
of FMI and ASAM ODS is much easier than the application of 
OSLC. This is mainly due to the fact that the OSLC 
specification is intentionally kept very open. This brings a lot 
of flexibility, but makes it hard to implement generally 
applicable interfaces. Furthermore, the work with OSLC 
requires a good understanding of web technologies. Especially 
because the OSLC specifications often simply refers to other 
specifications or relies on the knowledge of best practices for 
web development. One remaining open issue for the integration 
using OSLC is the question of security. The OSLC 
specification does not state much about security considerations, 
although this seems to be one of the most important topics. An 
important advantage of lifecycle integration is the possibility to 
query information over a variety of tools. This requires a 
comprehensive role and access management. A detailed 
investigation of security aspects is currently in work.  

However, we have shown that OSLC does have advantages 
regarding the reuse of interfaces. For example, the HPQC 
Requirement provider has been used by the Refine tool and the 
VeVaT tool without any changes. On the other hand, we are 
also trying to investigate if we can simply replace the 
requirement management tool. This independence of a concrete 
tool is one of the main arguments for standardized interfaces. 
We have identified some weaknesses in the specification, 
which require the consumer to understand tool specifics. But 
these weaknesses could easily be fixed by adding some more 
details to the specification. Overall, we experienced no real 
show stoppers for this exchangeability of tools. Currently, the 
main problem is the lack of tools, which fully comply with the 
specification.   
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