
Seamless tool integration in an automotive use case
An experience report

Andrea Leitner, Christian El Salloum

Instrumentation and Test Systems
AVL LIST GMBH

Graz, Austria

{firstname.name@avl.com}

Abstract—The development of today’s complex systems

requires the use of a variety of different tools. In order to

efficiently and effectively handle the complexity of the

development process, the tools have to collaborate in a seamless

way. Interoperability and openness are getting more crucial than

ever before. The project CRYSTAL (CRitical sYSTem

engineering AcceLeration) has identified this need and aims for

an Interoperability Specification (IOS) as an open European

standard for the development of safety-critical embedded

systems. The IOS comprises existing open specifications and

provides extensions wherever necessary.

In this paper, we describe our experiences with the

application of the Crystal IOS in an automotive use case. We will

show the engineering activities which are supported by our tool

chain and how we are trying to achieve a seamless integration of

the involved tools. As a conclusion, we report some of our

experiences in the implementation of this use case.

Keywords—seamless tool integration; open specifications;

interoperability ;OSLC;

I. INTRODUCTION

The processes of developing, deploying, governing,
operating and maintaining modern safety-critical embedded
systems is highly complex and requires specialized tools
supporting different activities throughout the entire product life
cycle. Therefore, OEMs and suppliers are typically operating a
large set of tools from different vendors often complemented
by custom in-house solutions. The overall process can be
effective and efficient only, if it supports collaboration among
all stakeholders and consequently interoperability between the
tools they are using. Considering the ongoing outsourcing and
globalization activities, interoperability and openness is getting
even more crucial. In addition, the demand for supporting a
large number of product variants further increases the
complexity to be handled.

Today, tool integration is often done in an ad-hoc manner
by creating proprietary bridges between each pair of tools.
Such an approach does not scale, since the number of required
bridges grows exponentially with the number of employed
tools. Moreover, the resulting tool chain becomes extremely
vulnerable to common changes like version upgrades from tool
vendors, and the efforts for maintaining a large set of bridges is
sooner or later no more acceptable. The main technical
challenge in addressing this problem is the provision of open

and common interoperability technologies supported by the
different tools that generate and provide access to data covering
the entire product lifecycle.

The project CRYSTAL (CRitical sYSTem engineering
AcceLeration) has identified this need and takes up the
challenge to establish and push forward an Interoperability
Specification (IOS) as an open European standard for the
development of safety-critical embedded systems in the
automotive, aerospace, rail and health care domain. This
standard will allow loosely coupled tools to share and interlink
their data based on standardized and open technologies that
enable common interoperability among various life cycle
domains. This reduces the complexity of the entire integration
process significantly. CRYSTAL is strongly industry-oriented
and will provide ready-to-use integrated tool chains having a
mature technology-readiness-level (up to TRL 7). In order to
reach this goal, CRYSTAL is driven by real-world industrial
use cases from the automotive, aerospace, rail and health sector
and builds on the results of successful predecessor projects like
CESAR, SAFE, iFEST, MBAT on European and national
level.

Creating and establishing a new standard on a large scale in
an already consolidated market cannot be achieved by small
individual organizations. With a budget of more than 82
million Euro and 68 partners from 10 different European
countries, CRYSTAL has the critical mass to accomplish this
endeavor. The project consortium is made up of participants
from all relevant stakeholders, including OEMs, suppliers, tool
vendors and academia.

Here, we will describe one of the industrial use cases from
the automotive domain which is driven by AVL. AVL aims for
an open integration of its own tools with tools from other
vendors to enable seamless interoperability throughout the
development process for their customers. In the remainder of
this paper, we will focus on the different engineering activities
that are supported by our tool chain and how we are using open
standards to foster interoperability. This paper is structured as
follows: Sec II. introduces the used specifications and provides
some references to related work. Sec III. describes the
engineering activities that should be supported by the actual
tool chain. The tools and interoperability specifications that
build up the tool chain are highlighted in Sec IV. Sec V finally
concludes the paper with some lessons learned.

II. BACKGROUND AND RELATED WORK

This section introduces the most relevant specifications of the

Crystal IOS[1].

A. OSLC

Open Services for Lifecycle Collaboration (OSLC) [2] is an

open community that creates specifications for integrating

tools based on standardized and well-known web technologies

such as Hypertext Transfer Protocol (HTTP), the Resource

Description Framework1 (RDF), and the Uniform Resource

Identifier (URI).

It makes use of the linked data principles defined by Tim

Berners-Lee2:

 Use URIs as names for things

 Use HTTP URIs so that people can look up those

names

 When someone looks up a URI, provide useful

information, using the standards (RDF*, SPARQL)

 Include links to other URIs, so that they can discover

more things.

OSLC consists of a core specification [3] and a set of

domain specifications. The core specification defines essential
properties, behavior, and services that expand the W3C Linked
Data concept3 and enables the integration of tools.
Additionally, domain specifications are created and maintained
by specific working groups in order to support a common
vocabulary. These specifications include requirements
management, change management, architecture management,
quality (test) management, and asset management. The base for
these specifications are concrete use case scenarios. The
scenario-based approach ensures that the specifications only
contain a minimal set of domain properties, because OSLC
promotes the idea of a stable standard which specifies just
enough for realistic integration scenarios.

Data integration with OSLC mainly consists of two parts: a
provider, which is responsible for managing and providing data
via a web service, and a consumer, which is able to request and
manipulate (Create, Update, Delete) data. In order to be able to
communicate, provider and consumer have to comply with the
same specification. There is no need to change the data model
or the tool behavior. Consumers can create links between
OSLC resources by embedding the URL of the related OSLC
resource as a property of the resource itself. OSLC providers
can store the link information in a tool independent format
which enables traceability beyond different tools.

Experiences of the application of OSLC in different
application scenarios have been reported by several authors [4,
5, 6]. Biehl et. al [7] furthermore describe an approach for the
automatic generation of OSLC adapters in order to overcome
the cumbersome and recurring implementation work for the
common parts of an adapter. We have not used a generation
approach for our implementation, instead we are relying on the

1 http://www.w3.org/RDF/
2 https://www.w3.org/DesignIssues/LinkedData.html
3 http://www.w3.org/standards/semanticweb/data

existing frameworks Eclipse Lyo4 for Java and OSLC4net5 for
C#.

B. Functional Mockup Interface (FMI)

The FMI standard currently evolves itself to be the standard
for co-simulation (so far there has been none). FMI standard
version 1.0 (see [8]) was published in 2010 as one result of the
ITEA2 project MODELISAR. FMI 2.0 followed in July 2014.
The FMI 2.0 standard [9] consists of two main parts: (1) FMI
for Model Exchange with the intention to provide generated C-
Code of a dynamic system model in the form of an input/output
block that can be utilized by other modeling and simulation
environments. Models (without solvers) are described by
differential, algebraic and discrete equations with time-, state-
and step-events. (2) FMI for Co-Simulation with the intention
to couple two or more models with solvers in a co-simulation
environment. The subsystems are solved independently from
each other by their individual solver - data exchange between
subsystems is restricted to discrete communication points. Data
exchange and the synchronization of the slave simulation
solvers is controlled by master algorithms between subsystems
and. FMI allows standard, as well as advanced master
algorithms, e.g., the usage of variable communication step
sizes, higher order signal extrapolation, and error control.

A component implementing the FMI standard is called
Functional Mockup Unit (FMU). A FMU is a zip-file with
extension “.fmu” which contains all necessary components to
utilize the FMU (for co-simulation): (a) An XML-file
containing the definition of all exposed variables of the FMU,
as well as other model information. It further includes a slave-
specific XML-file with relevant information for the
communication, e.g. flag indicating the ability of the slave to
support advanced master algorithms (e.g. the usage of variable
communication step sizes, higher order signal extrapolation, or
others). (b) A small set of easy to use C-functions to initiate
the communication with a simulation tool, to compute a
communication time step, and to perform the data exchange at
the communication points are provided in source and/or
binary form. (c) Further data can be included in the FMU zip-
file (e.g. a model icon (bitmap file), documentation files,
maps and tables needed by the model, and/or all object
libraries or DLLs that are utilized). Several publications
show the application of FMI [10,11].

C. ASAM ODS

ASAM (Association for Standardization of Automation and
Measuring Systems) is an association that coordinates the
development of technical standards especially in the field of
measurement, calibration and test automation. It supports the
vision that tools can be freely interconnected to allow a
seamless exchange of data throughout the development
process. The standards define protocols, data models, file
formats and application programming interfaces (APIs) for the
use in the development and testing of automotive electronic
control units. ODS (Open Data Services) [12] is one of these
standards and focuses on the persistent storage and retrieval of

4 http://www.eclipse.org/lyo/
5 https://oslc4net.codeplex.com

testing data. The standard is primarily used to set up a test data
management system on top of test systems that produce
measured or calculated data from testing activities. A typical
scenario for ODS in the automotive industry is the use of a
central ODS server, which handles all testing data produced by
vehicle test beds. The major strength of ODS as compared to
non-standardized data storage solutions is that data access is
independent of the IT architecture and that the data model of
the database is highly adaptable yet still well-defined for
different application scenarios.

III. SUPPORTED ENGINEERING ACTIVITIES

The considered use case consists of 5 engineering activities.
An engineering activity can be seen as a typical activity of an
engineer, which should be supported by a tool chain.

A. Formalize Requirements

The major purpose of this engineering activity is to derive
(semi-)formal, machine-processible requirements from natural
language requirements. The term semi-formal here refers to the
fact that the notion not necessarily has strictly defined
semantics. Currently, tools such as HP Quality Center, PTC
Integrity or Excel are typically used to manage natural
language requirements.. In our use case we are evaluating three
methods to semi-formalize them: SysML requirement profiles,
sequence chart-based techniques, and boilerplate techniques
based on domain-specific languages.

As a precondition, we assume that natural language
requirements are available and stored in a requirement
management tool (e.g. HP QualityCenter). We consider vehicle
requirements, testing requirements, as well as legal
requirements (modeling of selected parts of the WLTP
emission legislation). The engineering activities are then
comprised of the following steps:

 Reading natural language requirements from a
requirement management tool into a requirement
formalization tool.

 The requirements engineer derives semi-formal
requirements by means of the formalization tool.
One natural language requirement can be
represented by n semi-formal requirements.

 The semi-formal requirements are stored in the
requirements management tool.

 Each semi-formal requirement is linked to its
corresponding natural language requirement.

Consequently, the post-condition of these steps is that the
semi-formal requirements are stored and interlinked
accordingly.

B. Heterogeneous Simulation

Heterogeneous simulation (also called co-simulation)
describes the ability to couple two or more simulation models
executed in different tools at run-time. This is quite important
since the simulation tool landscape is usually very
heterogeneous and a typical development process involves

several domain-specific modeling and simulation tools.
However, it is important to enable a holistic system simulation
already at an early stage of development. Development
frontloading ensures that system integration can already be
tested in the simulation phase.

A simple example of a co-simulation consists of and engine
model and a functional model that describes the control
algorithms of the engine’s ECU. Both models are created using
dedicated modeling and simulation tools. Here, it is helpful to
have the possibility to couple the two models in order to get
feedback about their interactions.

The engineering activity assumes that the simulation
models have already been created. It consists of the following
steps:

 Appropriate simulation models are selected based
on the requirements.

 The simulation models are coupled (connecting
input and output signals).

 The co-simulation is configured (step-size,
simulation time, and so on).

 The co-simulation is executed.

 The simulation results are stored in a dedicated
database.

C. Heterogeneous Real-Time Simulation

Heterogeneous real-time simulation is quite similar to the
previous engineering activity, but with the additional
requirement of real-time capabilities. At a certain point in the
development process, simulation models are replaced by
physical components. Taking the example from above, we
would now like to couple the functional model with a real
engine on an engine test bed. These means that the models as
well as the interfaces (data exchange) need to be real-time
capable.

The engineering steps for this activity can be described as
follows.

 The co-simulation configuration of the
heterogeneous simulation (in office) can be
reused.

 The simulation model which is available as
physical component now can be replaced by a
placeholder for this component.

 Non-real-time simulation models have to be
exchanged by real-time capable versions.

 The models, model parameters, and the coupling
information should be exported.

 This information will then be used for the
configuration of the test bed.

 The simulation models can be executed together
with the physical component on the test bed.

 The measurement results are stored in a dedicated
data base.

D. Validate Design against Requirements

The purpose of this engineering activity is the validation of
a system design with respect to requirements based on
simulation (or testing on a testbed).

The pre-condition for this activity is that the requirement
formalization activity has been finished and the semi-
formalized requirements are stored and accessible.
Furthermore, test cases have been defined (in a test
management tool), linked to requirements, and executed. A test
case here basically describes a simulation run. The test results
(i.e. simulation results) are stored and accessible.

The engineering activity is comprised of the following
steps:

 Select a test case in the validation tool.

 Read all requirements which are linked to the
selected test case from the requirements
management tool into the validation tool.

 The validation tool analyses the simulation or
measurement results and compares them to the
formalized requirement limits.

 Validation results (i.e. passed or failed for all
checked requirements) are generated – optionally
with some addition information (such as failure
reason, detected deviation from limits, etc.).

 The validation results are stored as annotations in
the requirement management tool.

E. Linking Calibration and Measurement Data

For this engineering activity, we assume that a customer
requests the calibration of an engine according to a specific
norm (e.g. Euro56). This can be seen as the calibration goal. As
a result of this engineering activity, calibration and
corresponding measurement data are linked in order to
reproduce the measurement results for each calibration data set.
This enables the evidence for certification (proof that emission
norm is fulfilled).

As a prerequisite we assume that the initial data (A2L and
HEX file) has been imported in the calibration data
management tool.

The engineering activity consists of the following basic
steps:

 Project manager assigns calibration tasks (represented
in a .dcm file) to calibration engineers. The calibration
is usually not done by one person, because it involves
thousands of calibration parameters. These parameters
are packaged in several .dcm files, each containing a
logically related set of calibration parameters.

6https://www.theaa.com/motoring_advice/fuels-and-

environment/euro-emissions-standards.html

 Calibration engineers perform calibration tasks and
test the setting in a test run. The measurement results
of this test run are stored in a record file.

 Record files are stored in a dedicated ASAM ODS
database.

 Link calibration data (DCM file) to measurement
results (record file).

IV. TECHNICAL REALIZATION

This section describes the realization of the tool chain
based on open standards wherever possible and meaningful.
Figure 1 illustrates the considered tool chain.

A. Formalize Requirements

As mentioned before, we are evaluating different
approaches for requirement formalization. Here we are
focusing on the realization using the boilerplate approach.
More information about the sequence chart-based techniques
can be found in [13]. The tools involved in this integration
scenario are HP Quality Center (HPQC) for requirements
management and Refine – a prototype implementation of the
boilerplate-based approach. Refine is an Eclipse-based
prototype built upon the Xtext7 framework. Xtext supports the
creation of textual domain-specific languages. In the Crystal
project, VIF has defined a requirements specification grammar.
The resulting domain-specific requirements language supports
the requirements engineer in writing “good” requirements.
More detailed information about the tool and the language can
be found in [14].

Xtext has not only the advantage that the editor and many
useful features are generated automatically, it furthermore
provides advanced parsing capabilities. We use these
capabilities to extracts min/max values from the requirements.
This information is then used in the follow-up engineering
activity.

In this engineering activity, interoperability is supported by
OSLC. AVL has implemented a prototype OSLC RM Provider
for HPQC. This provider supports CRUD (create, retrieve,
update and delete) services for Requirements. Refine
implements a consumer interface that supports the import of
natural language requirements, the export of semi-formal
requirements, and the update of natural language requirements
with the respective link information. The OSLC interface has
been implemented to support consistency checks.

7 https://eclipse.org/Xtext/

B. Heterogeneous Simulation

For heterogeneous simulation, we are using the AVL
product Model.CONNECT. Some of the tool features (e.g.
FMI execution) have been developed in the context of Crystal-
Model.CONNECT is a platform to set up and execute system
simulation models, which are composed of subsystem and
component models from multiple model authoring
environments. Models can be integrated based on standardized
interfaces (FMI) as well as based on specific interfaces to a
wide range of well-known simulation tools. Model.CONNECT
supports the user in organizing system model variants. These
variants may describe different configurations of the system
under investigation as well as different testing scenarios and
testing environments.

Model.CONNECT can be used as follows: The first step in
the setup of a simulation is to add model templates into a
system (i.e. model interfaces and input elements such as signal
table). As a next step, the concrete models and configurations
are added to the templates. After inserting the data into the

model elements and defining the port units, the elements
need to be connected so that they can communicate with each
other. One input can be connected to only one output, while
one output can be connected to one or more inputs. In order to
use this setup to perform the actual simulation, several
additional steps are needed, i.e. defining the simulation time,
setting the simulation properties, configuring the monitoring
view, etc.

The results of a simulation can be exported into AVL
Santorin. AVL Santorin is a tool for measurement result
management and adheres to the ASAM ODS standard.

C. Heterogeneous real-time Simulation

For this engineering activity we want to reuse as much
information as possible from the previous heterogeneous
simulation step. With this, consistency in the vehicle
development process is ensured by reusing simulation models
and model configurations from the office at the testbed.

AVL ARTE.Lab™ can be used to create real-time FMU’s.
These real-time FMUs can be used in Model.CONNECT by
simply replacing the non-real-time FMU. The interconnection
information (configuration), the simulation models and the

Figure 1: Overview of the toolchain

model parameters are stored in a zip-file which then is used for
the preparation of the test bed. Using the central access point
for parameterization of the testbed, the AVL Navigator, the
zip-file is stored in the AVL SANTORIN database and can
then be rolled out in the test field. The installation and
deployment of the models, the parameters and the model
configuration is done automatically. The traceability and
reproducibility is ensured by using the same workflow and
storage location as for other testbed parameters. The AVL
Navigator framework with AVL Santorin enables the
versioning of the stored parameters and model configurations.

D. Validate Design against Requirements

The tools used for this engineering activity are mainly HP
Quality Center, AVL VeVaT /Magic, and AVL Santorin.

AVL VeVaT is a Verification & Validation Tool for
various software products or software modules which generate
voluminous numerical output – e.g. numerous single result
values and/or huge sequences of numerical values (e.g. multi-
channel time history data). It provides two approaches for
checking the correctness of its numerical output data:

 Comparison of actual output data to already validated

reference output data (mainly used for regression

tests, where output data of a new product version get

compared to validated data of a preceding software

release)

 Detecting/deriving significant properties of output

data (time history data) and compare them to

numerical product requirements (e.g. deriving

properties of a vehicle braking event from road

measurement data and checking, whether e.g. braking

time, braking distance, deceleration, ABS- influences

etc. reside within required limits).

AVL VeVaT generates validation reports, which supply

passed/doubtful/failed validation statements at several
hierarchy levels, i.e. an overall statement and more detailed
statements for subsections of analyzed data. It works on top of
AVL Magic, which imports measurement or simulation values
for the actual post-processing.

The integration for this scenario is twofold: First VeVaT
reads and updates requirement and test case information using
an OSLC interface. Simulation results are stored in ASAM
ODS format and can be exported in the standardized ASAM-
ODS ATF/X file format.

AVL VeVaT implements an OSLC consumer interface for
Requirements and Test Cases. As a first step the user can select
a test case. Test cases are defined in HPQC and can be
retrieved using an OSLC QM interface. The OSLC QM
provider for HPQC has been implemented by AVL for the
Crystal project and does provide only the required
functionality. Once the user has selected a test case, he can read
all the requirements which are linked to this test case from HP
Quality Center.

AVL VeVaT now has all the requirements for the selected
test case together with the validation parameters (defined in the

Formalize Requirements engineering activity). After the actual
validation step, the requirements now have the validation
results (passed/failed information) assigned to them. This
information is written back to HPQC using OSLC.

E. Linking Calibration and Measurement Data

In order to establish a link between the calibration and
measurement data, a tool called AVL Navigator is used. This
tool can basically be understood as a viewer on different
databases. Therefore it is possible to browse measurement data
and calibration data, but so far it was not possible to establish
links and to navigate between the different types of data. The
integration of calibration data in the AVL navigator has been
realized using OSLC. The calibration management tool AVL
Creta implements an OSLC provider interface for Assets. AVL
navigator is implementing the corresponding consumer
interface. It is now possible to link a selected DCM file to a test
record.

V. LESSONS LEARNED AND CONCLUSION

The described tool chain has been set up in a prototypical
way. We have shown that the open specifications of the Crystal
IOS cover a broad range of automotive engineering activities.
Nevertheless, we also experienced that the practical application
of FMI and ASAM ODS is much easier than the application of
OSLC. This is mainly due to the fact that the OSLC
specification is intentionally kept very open. This brings a lot
of flexibility, but makes it hard to implement generally
applicable interfaces. Furthermore, the work with OSLC
requires a good understanding of web technologies. Especially
because the OSLC specifications often simply refers to other
specifications or relies on the knowledge of best practices for
web development. One remaining open issue for the integration
using OSLC is the question of security. The OSLC
specification does not state much about security considerations,
although this seems to be one of the most important topics. An
important advantage of lifecycle integration is the possibility to
query information over a variety of tools. This requires a
comprehensive role and access management. A detailed
investigation of security aspects is currently in work.

However, we have shown that OSLC does have advantages
regarding the reuse of interfaces. For example, the HPQC
Requirement provider has been used by the Refine tool and the
VeVaT tool without any changes. On the other hand, we are
also trying to investigate if we can simply replace the
requirement management tool. This independence of a concrete
tool is one of the main arguments for standardized interfaces.
We have identified some weaknesses in the specification,
which require the consumer to understand tool specifics. But
these weaknesses could easily be fixed by adding some more
details to the specification. Overall, we experienced no real
show stoppers for this exchangeability of tools. Currently, the
main problem is the lack of tools, which fully comply with the
specification.

VI. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Program
(FP7/2007-2013) for CRYSTAL – Critical System Engineering
Acceleration Joint Undertaking under grant agreement №
332830 and from specific national programs and/or funding
authorities.

[1] Crystal consortium, “Interoperability Specification (IOS) – V2

D601.022” Deliverable, April 2015, http://www.crystal-
artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022
_v1.0.pdf, Visited: 2016-02-10.

[2] Open Services for Lifecycle Collaboration, “What is OSLC-OSLC
primer.” Online. http://open-services.net/resources/tutorials/oslc-
primer/what-is-oslc/, Visited: 2016-02-10.

[3] Johnson, D.; Speicher, S., “OSLC core specification version 2.0”.
Technical report, Open Services for Lifecycle Collaboration, August
2013.

[4] Aichernig, B.K.; Hormaier, K.; Lorber, F.; Nickovic, D.; Schlick, R.;
Simoneau, D.; Tiran, S., "Integration of Requirements Engineering and
Test-Case Generation via OSLC," in Quality Software (QSIC), 2014
14th International Conference on , vol., no., pp.117-126, 2-3 Oct. 2014

[5] Seceleanu, T.; Sapienza, G., "A Tool Integration Framework for
Sustainable Embedded Systems Development," in Computer , vol.46,
no.11, pp.68-71, Nov. 2013

[6] Saadatmand, M.; Bucaioni, A., "OSLC Tool Integration and Systems
Engineering - The Relationship between the Two Worlds" , 40th
Conference on Software Engineering and Advanced Applications , pp.93
-101

[7] Biehl, M.; El-Khoury, J.; Torngren, M., "High-Level Specification and
Code Generation for Service-Oriented Tool Adapters," in Computational

Science and Its Applications (ICCSA), 2012 12th International
Conference on , vol., no., pp.35-42, 18-21 June 2012

[8] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H.Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H.
Olsson, J.-V. Peetz, S. Wolf: The Functional Mockup Interface for Tool
independent Exchange of Simulation Models. 8th International Modelica
Conference. Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

[9] FMI development group, “Functional Mock-up Interface for Model
Exchange and Co-Simulation”, Technical report, July 2014.
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_fo
r_ModelExchange_and_CoSimulation_v2.0.pdf, Visited: 2016-02-10.

[10] Raad, A.; Reinbold, v.; Delinchant, B.; Wurtz, F., "FMU software
component orchestration strategies for co-simulation of building energy
systems," in Technological Advances in Electrical, Electronics and
Computer Engineering (TAEECE), 2015 Third International Conference
on , vol., no., pp.7-11, April 29 2015-May 1 2015

[11] Krammer, M.; Martin, H.; Radmilovic, Z.; Erker, S.; Karner, M.,
"Standard compliant co-simulation models for verification of automotive
embedded systems," in Specification and Design Languages (FDL),
2015 Forum on , vol., no., pp.1-8, 14-16 Sept. 2015

[12] Association for Standardization of Automation and Measuring Systems,
“Open Data Services”, Technical report, January 2015,
http://www.asam.net/nc/home/standards/standard-
detail.html?tx_rbwbmasamstandards_pi1%5BshowUid%5D=3080
Visited: 2016-02-10

[13] Christian Brenner, Joel Greenyer, Jörg Holtmann, Grischa Liebel,
Gerald Stieglbauer, Matthias Tichy, ScenarioTools Real-Time Play-Out
for Test Sequence Validation in an Automotive Case Study. ECEASST
67 (2014).

[14] Nadja Marko, Andrea Leitner, Beate Herbst, Alfred Wallner, Combining
Xtext and OSLC for Integrated Model-Based Requirements
Engineering. EUROMICRO-SEAA 2015: 143-150.

http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
http://open-services.net/resources/tutorials/oslc-primer/what-is-oslc/
http://open-services.net/resources/tutorials/oslc-primer/what-is-oslc/
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5BshowUid%5D=3080
http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5BshowUid%5D=3080

