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Critical Real Time Embedded Systems (CRTES)
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Functional correctness Timing correctness

Software performs its task Software fits its assigned time budget

Provide evidence about the timing (and functional)  correctnes 
of the system against safety standards



Timing verification
 Obtaining tight WCET estimates is complex

 Several methods derived in last decades
 Rely on assumptions and inputs on the HW/SW
 For each domain/system preserving those 

assumptions is hard
 No method is fully trustworthy on all accounts
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Challenges
 For end users

 Industrial users have to derive WCET estimates
- With the domain-specific degree of trustworthiness
- Strict cost and effort constraints
- Keep a high benefit/cost ratio

 For PROXIMA
 Varying end-user requirements on timing verification

- Different per platform, domain and criticality level
• Overheads that timing analysis “is allowed to create” vary (cost, instrum.)
• Evidence/confidence required vary as well
• Relates to Timing Bands

 Building an one-size-fits-all solution is not realistic for us
 PROXIMA provides several solutions w/ different requirements

- Instrumentation at the Unit-of-Analysis (e.g. function)
- Instrumentation at basic-block level
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Measurement-Based Timing Analysis
 Main focus of PROXIMA 
 Measurements is the dominant timing analysis approach 

across different market segments
 Automotive
 Railway
 Space
 …

 “Measurements are unsafe”? 
 Measurements are used for highest-criticality software (e.g. DAL-A 

in avionics)
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OperationAnalysis

Measurement-Based Timing Analysis
 Analysis phase 

 Collect measurements to derive a WCET estimate that holds valid 
during system operation

 Operation phase 
 Actual use of the system (under assumption it stays within its 

performance profile)
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obs1
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obsN
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Prediction bound

Must hold during operation



The “fallacy” of Deterministic Systems
 Deterministic systems

 Everything is repeatable
 Do the same thing twice and it’s exactly the same

 But this is not really true for all aspects of computation
 Run the same thing multiple times, get variations in ordering, 

timing, interactions between components

 HW/SW complexity grows breaking deterministic models

Platform (HW 
and OS)

Application
InputsInputsInputsInputs

Jittery execution times

Initial conditions, 
Processor HW, 
RTOS stateful 
data structures
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SETV aka SJ
 Sources of 

 Execution Time Variability (SETV) or 
 Jitter (SJ)

Any platform element in the platform that cause execution 
time of a program to vary

 The value that each SETV gets for a given experiment 
defines the execution conditions for that experiment
 Systems are complex to understand, the user can only follow 

what happens at a high level
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High-level and low-level SETV

 High-level SETV: the user has some control on them
 Input vectors impact on execution paths

- Metrics to measure coverage (SC, DC, MCDC)
- Tools to determine coverage (e.g. RapiCover from Rapita Systems)
- Which path was traversed, to make claims on path coverage

 The use of complex high-performance hardware creates 
other low-level SETV
 The user lacks means to measure the coverage of low-level SETV

- Often insufficient support from the HW
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Examples of low-level SETV

 Example 1
 The mapping program objects (functions) 

- How software objects are assigned to memory       
- How they are placed in cache  conflicts suffered 
- Execution-time effects

 Example 2
 Variable latency of floating point operations
 We do not want to ask the user to control  

the particular values operated at analysis
and how representative they are

Se
ts

A

B

C

11 Paris, France                                   28/09/2016

Se
ts

A B C
Se
ts

A
B C …

time



State of practice of deterministic systems

 Level of conservative margin is unclear (20%, 50%, 200%)
 No scientific basis, only expert judgement
 It works in practice when user has “sufficient” HW/SW knowledge

Software “A”Good test caesGood test caesGood test caesWorst-case
test cases

Software “A”Good test caesGood test caesGood test caes“Bad”
test cases

Margin

 Test cases: from worst to good test cases
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State of practice of deterministic systems
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 Confidence: ensure that the worst-case conditions have 
been exercised or closely approximated
 Effort involved
 Diluted in the overall testing campaign

 Desired properties:
 Accurate and cost-effective timing analysis
 Representative testing
 Constraints:

- The user can ensure that test inputs and test conditions exercise 
each component adequately

- All important SoJ have been observed wwithout adding conditions 
that are infeasible in practice



Measurement-Based Timing Analysis
 Goal

 Based on system analysis-time measurements
 Derive WCET estimates that hold at system operation

 How can the user (without dealing with system internals)
 Be sure that he captures in the measurements taken at  analysis 

time those events impacting execution time?
 How to provide convincing evidence?

 Problems
 User to control the execution conditions exercising bad scenarios
 In systems with several jittery factors the user has to architect 

experiments to make events to happen on the same run
 The user has no means to determine the number of runs to do
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PROXIMA measurement-based approach
 PROXIMA MBPTA focuses on

 Change platform behaviour so that
- low-level SETV are “handled” by the platform w/o user intervention 

or 
- user has means to control SETV in a cheap/fast way

 Increasing confidence on derived bounds

 Approach
1. Probabilistic Timing Analysis 

(Extreme Value Theory)
2. Time Randomization

- Functional behavior stays unchanged
 Both are required
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MBPTA

EVT Rando‐
mization



Statistical analysis (EVT)
 Building block of MBPTA, but it is not MBPTA

 Used to consider probabilities associated with extreme 
(and thus rare) events
 Models the behavior of maxima/minima in the tail of a distribution

 Successfully applied in fields such as hydrology/insurance

 We are interested in EVT to predict – under precise 
hypotheses – extreme (worst-case) execution time of a 
software program executing on a processor
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Extreme Value Theory /3
 Considers the system as a black box
 Derives the combined probability of appearance of those 

events observed (captured)
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Black 
Box

‐ Minute every time you check your watch
‐ Number of times a day my cat makes something

crazy
‐ Level of the sea
‐ …
‐ Execution time observations  coming from a 

computer system

EVT

Input data



Extreme Value Theory /3
 Derives the combined probability of appearance of those 

events observed (captured)  “Observe the same thing”
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Analysis
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Application
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Inputs
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different 
things for 
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Extreme Value Theory /4
 Cannot predict those events that are not observed and 

whose impact is bigger than that of those observed

 To solve our problem EVT must be fed with meaningful
(representative) observations 
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Gaining representativeness /1
 Jitterless resources

 Fixed latency, the same outcome at every occurrence of that event 
 E.g., integer adder

 Analysis – Operation representativeness issue
- “What you see (at analysis) is what you get (at operation)”
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Gaining representativeness /2
 Deterministically upper-bounded resources

 FP multiplication whose latency is 1 or 5 cycles depending on the 
values operated 

 Enforce the FPU to take 5 cycles at analysis time
 During deployment it can take any latency in [1…5]

 Analysis – Operation representativeness issue
- What you see at analysis is worse than what you have at operation
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Gaining representativeness /3
 Timing randomization

 Introduced for hard-to-predict high-jitter resources (e.g. caches)
 Assuming/enforcing worst latency would be to pessimistic
 At hardware level or at software level

 Probabilistic upper-bounded resources (jitter)
 Same probability distribution

- E.g., cache access with the same hit/miss probabilities
 Upper-bounded distribution
 E.g., Randomized caches
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Gaining representativeness /4
 Probabilistically upper-bounded

 Number of runs to perform to ensure ‘relevant’ events are 
captured in at least one run
- Jitterless  1
- Deterministic upper-bounded   1
- Randomized resources  can be determined
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OperationAnalysis

Representativeness?

Probability of an event



Example: the cache
 Memory mapping  cache layouts  execution time

 Deterministic system
 How does the user get confident that experiments capture bad 

(worst) mappings?
 Memory mapping varies across runs, but not in a random manner

 Randomized systems
 Make N runs 
 We can derive 

- the probability of the observed mappings @ operation
- the probability of unobserved mappings
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Facilitate incremental integration
 Incremental HW/SW development and qualification steps

 Help mastering complexity
 Trustworthy information on SW timing behavior better obtained as 

soon as possible to reduce ‘fixes’ costs

 MBDTA
- Alignment of objects change for App. A in different integration steps

• Leading to disruptive changes in the cache behavior
- Analysis results obtained in isolation do not hold any more
- After corrections applied to App. A What impact on App. B and C?

 MBPTA added value
- Analysis results are robust against changes in the cache layout as 

long as a representative number of layouts have been observed

RTOS
Library L1
Library L2

App. A

RTOS
Library L1

App. B

RTOS
Library L1
Library L2
Library L3

App. A
App. B
App. C

RTOS
Library L3

App. C
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Summary
 MBPTA: Randomization + EVT
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MBPTA

EVT

confidence

Jitterless resources  ‘what you see is what you get’
Randomized resources   probabilistic upper bounding
Worst‐latency resources   Deterministic upper bounded resources



MBPTA Basic Application Procedure
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EVT projection examples
 Note log scale on the left
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Implications in the V&V process
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Current practice SW‐only Probabilistic
Main V&V 

path roughly 
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HW‐only Probabilistic
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PROXIMA platforms and toolchains
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Space

Automotive

Rail

Avionics

FPGA-HWRand FPGA-SWRand P4080 AURIX

1

2

3

4

5

6

7

8

9

Significant effort

- Real hardware +  Commercial tools = Significant efforts
- 4 platforms and 9 toolchains

Maturity of PROXIMA Solutions
- (+++) FPGA, (++) AURIX, (+) P4080
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FPU: Upper-bound
 Bound from above

 FPU (FDIV, FSQRT)
 FDIV latency: 15-18 cycles

- Enforce always 18
 FSQRT latency: 23-26 cycles

- Enforce always 26
 Limited pessimism
 End user does not need to 

control input values operated
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Caches: Randomization
 Randomization
 Cache placement

 Goal: remove the need to control me-
mory placement at analysis (goal G1)

 Random modulo (IL1, DL1) provides 
randomization needed with similar 
performance as modulo

 Random placement (L2)

 Cache replacement
 Random replacement (all caches)
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Caches: Randomization (2)
 Random cache placement

 User released from having to control memory layout
 Impact of memory layout factored in with randomization

- An argument can be done on the probability of bad cache layouts to 
be captured

 Random cache replacement
 Not mandatory but reduces probability of bad cases 
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L2
 L2 cache partitioned to keep 

time composability
 Randomization principle 

applied to placement and 
replacement
 As for first level caches
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Shared resources: Rand + Upper-bound

 Arbitration
 Randomized
 User released from controlling 

time alignment of requests 
across cores

 Round duration
 Upper-bounded to attain time 

composability
 Bandwidth can be allocated 

homogeneously or 
heterogeneously 
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 Randomization + upper-bound
 Number of rounds to wait   arbitration
 Duration of each round

Shared Cache



Results (single core)
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Challenges
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 How to achieve the time properties required by MBPTA on 
COTS processors?

 For the type of COTS we have analysed, there are two 
main Sources of Jitter (SoJ)
 Caches  SW randomization
 FPU  padding 
 Multicore contention  MBPTA multicore analysis (VICI                   

analysis, pronounced as ‘VC’)



Caches: Randomization
 Randomization

 Cache placement
 Randomize by SW location in 

memory of code and data
- Random memory locations lead to 

random placement in IL1, DL1, L2
 TLBs fully associative so no 

placement

 Cache replacement
 Indirectly has some randomization 

due to random placement 

 L2 contention
 Cache partition across cores
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Caches: Randomization (2)
 Place objects (functions, stack, global data, etc.) in 

random memory locations
 Emulate RP but at SW level
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Stack
frame 1

Stack
frame 2

Heap 1

DL1

Func1()
Func2()

Func3()

IL1

Stack
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Heap 1

Func2()

Func3()
Func1()

DL1

IL1



Chip level jitter
(deriving deterministic bounds to 

multicore contention)
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Extremes of the spectrum of solutions
 full time composability 
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 No time composability or 
combined WCET estimation
 Make a combined timing 

analysis of the tasks in the 
workload
- Do not assume any 

contention, work with the 
actual contention

 Any change of the tasks 
requires reanalyzing all tasks

 Only shown to work on 
simulation environments

τi

Worst possible contention

T1 T2 T3 T1

time

T4 T5 T6 T7

core0

core1



Partially Time Composable Bounds
 Goal:

 Can we trade some time composability to tighten WCET?
 Yes we can

 However… we do not want to ‘lose’ composability in a 
uncontrolled way
 We do not want to reanalyze the whole workload when a task 

changes!
 Time composability

- From all or nothing metric, to a metric with degrees
- Partial Time Composability

 we do not want to disrupt  the measurement-based 
approach of MBPTA
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Initial Results
 Intuition:

 S  abstracts the resource usage of the task under analysis, ߬஺
 T  abstracts the resource usage of contender tasks, ܿሺ߬஺ሻ

 Goal: 
 S and T make the WCET derived for ߬஺, time composable with 

respect to a particular usage U of the hardware shared resources 
made by ܿሺ߬஺ሻ

 Rather than with respect to the particular set of co-runners ܿሺ߬஺ሻ

 Principle when deriving ஺
௎

 ܧܥܹ ஺ܶ
௎	determined for a particular utilization U

 ܧܥܹ ஺ܶ
௎	composable under any workload with  resource usage < U

 Hence:
 “Forget particular tasks, focus on their resource usage”
 WCET = f (S,T) rather than WCET = f(߬஺,ܿሺ߬஺ሻ)
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Contention model
 All the technology based on performing runs in isolation of 

 The task under analysis
 The contender tasks

collecting PMCs ($misses, bus acceses,…)
 The model combines those PMC readings and produce 

contention bounds 

 Properties
 Works with randomized and non-randomized architectures
 Single core runs no multicore runs

- Reduce experiment complexity and time
 Time composability measure clearly defined

- Tighther results that fully time composable
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MBPTA for SW randomized single-core
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Integration into Rapita’s Verification Suite
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(RVS)



Integration into Rapita’s Verification Suite
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MBPTA projection SWRand multicore. noEPC
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 fTC, pTC tight models
 fTC captures worst case
 pTC effectively adapts to contenders load on the bus

 2 tasks:
 1 task, 
 1 cont.



MBPTA projection SWRand multicore. noEPC
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 fTC, pTC tight models
 fTC captures worst case
 pTC effectively adapts to contenders load on the bus

 2 tasks:
 1 task, 
 1 cont.

 FPU, Bus and memory controller jitter
 Small changes to MBPTA required
 PMC based for easy applicability
 Fully TC & partially TC to reduce pessimism



Results Railway: FPGA SWRand multicore

 Setup (L2 WriteBack, Round-Robin Bus)
 WCET normalized to Exection Time in isolation. 
 fTC. Each request of the IKR app. is assumed to contend with a 

request of the worst type from every other core
 ptC-100. IKR app. runs against 3 copies of itself. 
 ptc-80. IKR app. runs against 3 copies of an application 

performing 80% of the accesses the IKR application does
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 Tighter estimates 
than fTC

 Adaptability to 
contenders load

 Keep some 
degree of TC



Assumptions
 Assumptions:

 Run to completion
 Reliable PMC readings
 Stressing Kernel methodology derives worst contention latencies

 Other:
 Task under analysis is randomized
 Contender tasks are not 

- They can be derived a bound to their access counts
- Bound is resilient to cache layouts

 Future work:
 Probabilistic rather than deterministic bounds
 Probabilistic access counts of the contenders bounding impact to 

contenders cache layouts
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Conclusions
 PROXIMA deals with low-level source of jitter 

 Their variability naturally exposed when performing experiments
 Aims at reducing user intervention and knowledge about low-level 

sources of jitter

 Randomization and ‘work on worst latency’ approaches 
used as a means to ensure jitter arises in the 
measurements
 Can be applied at Software or Hardware level

 EVT to derive the combined probability of observed events
 Partial results shown

 Project ends in Sept 30th
 More information will be provided in the deliverables

- Tools, Results, 
- …
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