
COVERAGE AND REDUNDANCY
Test data should cover the domain and criticalities without including too much
redundancy so that test efforts are acceptable.

The similarity of images can be defined in many
ways but when sticking to local pixel features [7],
one can easily get unwanted results.

We use low discrepancy sampling techniques [8] to 
sample domain parameters and to establish content-
related distance
metrics over 
images.

Calculate a vector representation of the sam-
pling points for each view and use it to cluster
images:

INTRODUCTION

STATE OF THE ART CV HAZOP
An important means of increasing the efficiency of testing is the use of previous
experience: flaws and hazards that effected previous systems under comparable
conditions are likely to challenge a new systems as well.
A HAZOP [3] was conducted to systematically assess potential hazards the
general CV algorithm is facing:

Partition System into distinct “locations”: Define “parameters” for each location:

Together with well-defined “guidewords” this allows many combinations, each
representing a potential hazard

RESULTS

The VITRO tool chain allows the automatic generation of test images, the ground
truth data (depth and segmentation) and its clustering.

Input:

GT:

Clustering:

Computer vision (CV) is a key technology in many upcoming critical systems. Example applications include care
robots, autonomous cars, assembly lines, logistics, robotic surgery and automated medical diagnostics. Errors in one
of these systems could result in the loss of human life and therefore they are considered safety-critical. This means
that their vision components and vision algorithms have to be dependable too. Verifying if the implementation of a CV
algorithm fulfills the specifications is comparable to the verification of any other piece of software. But assuring that the
implementation can solve the task at hand (validation) presents a special case.

Today, CV algorithms are usually tested by applying many real test images and comparing the results against a
(manually) established ground truth. This method lacks computable coverage measures, and is hence insufficient for
certification of CV algorithms, which is required for their commercial use in safety-critical applications.

This work deals with increasing the safety of CV systems and to enable their certification thus allowing their use in
critical real world scenarios.

Currently a lot of test images are taken from reality to assemble a large dataset
and the needed ground truth is generated manually by humans.
This is very slow and creates bias in multiple levels:
Input images show only typical views; e.g. Caltech 101 [1]:

Ground truth data can vary depending on the testing person [2]:

Is the test data set diverse / broad enough to uncover potential flaws?
How can one measure the potential flaw coverage of a given test set?
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VITRO – Model Based Vision Testing      
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Parameter Meaning

Number Number of (distinguishable) light sources.

Position One emphasized point of light source; e.g. COG

Area The radiating area of the light source.

Spectrum Colour, i.e. light source emission spectrum

Texture Contrast distribution of emitted light.

Intensity Scaling factor for Texture

Beam width Opening angle of light source beam.

Wave prop. Polarization, coherence
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Evaluation example: 
Object recognition depending on 
its orientation and distance:

THE DOMAIN MODEL

Object description:
notations from CG and 
Virtual Reality, e.g. [4]

Relations, constraints:
own XML notation 
(UML[5]/OWL[6] based)

Object generators: 
parameterized, for 
obj. families like cups 

3D-model acquisition:
object descriptions from
high-quality stereo images
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