
On RTL to TLM Abstraction to Benefit Simulation
Performance and Modeling Productivity in NoC

Design Exploration
Sven Alexander Horsinka, Rolf Meyer, Jan Wagner, Rainer Buchty and Mladen Berekovic

TU Braunschweig, D-38106 Braunschweig, Germany
Email: {shorsinka, meyer, wagner, buchty, berekovic}@c3e.cs.tu-bs.de

Abstract—Growing demand to integrate more functionality
into single-chip solutions require new network-based interconnec-
tion models (NoC). The resulting increase in design complexity
and strict time-to-market restrictions endanger future viability
of Register Transfer Level (RTL) centric design processes. To
counteract these developments, the abstract design methodologies
presented by Transaction Level Modeling (TLM 2.0/SystemC)
are gaining popularity. With this paper, we demonstrate the
benefits of raising the abstraction level by creating an adjustable
NoC simulation model, satisfying the diverse needs of software
and system engineers. Based on a proven and tested RTL NoC
design, we applied modeling methods defined in the TLM 2.0
standard, creating flexible simulation model. It provides high
timing accuracy, enabling precise behavioral and performance
analysis. In addition, higher simulation speeds are achieved
by adjusting the timing accuracy. The results demonstrate the
advantages of variable simulation accuracy: simulation runs
are accelerated by more than two orders of magnitude with
performance and behavior assessment exposing a limited latency
error of less than four clock cycles compared to the RTL model.

I. INTRODUCTION

By further shrinking transistor feature sizes, the available
integration density increases steadily. But since 2007, the
ITRS observes that the utilized transistor density scaling
slowed down to factor of 1.6 per iteration instead of the
traditional increase by a factor of 2.0 [?]. This productivity gap
illustrates the incapability of established hardware/software
design processes in exploiting the potential of new fabrica-
tion techniques. The call for raised modeling abstraction is
increasing as methodologies based on Register-Transfer Level
(RTL) struggle to address the ever growing design space.
Through this, Transaction Level Modeling (TLM) emerged and
continues to gain popularity.

To allow higher design productivity it is necessary to
raise the simulation performance. This enables creation of
early prototypes, allowing software development and efficient
design-space exploration (DSE). As the simulation effort di-
rectly correlates with its accuracy, it is sensible to adjust the
accuracy according to the specific simulation needs. Greater
performance is of significant benefit for software development,

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n 621429 and from
the German Federal Ministry of Education and Research (BMBF), funding
contract 01IS14002O.

whereas system architects require high accuracy to asses
behavior and performance of a hardware model.

In this paper, we present an abstraction approach concerned
with Network-on-Chip (NoC) interconnection structures. Tech-
niques for modeling bus systems with adjustable timing accu-
racy are described in the SystemC TLM-2.0 IEEE 1666-2011
Standard [?]. We demonstrate how these techniques can be
translated to NoC structures for achieving high performance
and accuracy simulations.

By abstracting a separately developed and tested RTL NoC
design [?], we enable fair comparisons of the simulation
behavior for all abstraction levels. Our SystemC/TLM 2.0 NoC
model allows high-performance simulations over a magnitude
faster than the RTL implementation as well as enabling high-
accuracy simulations with a limited end-to-end latency error
less than three clock cycles when required.

This paper is organized as follows: Section 2 presents
related approaches of NoC simulation acceleration. A brief
overview of the reference NoC design, timing accuracy in
TLM 2.0, and general RTL-to-TLM abstraction goals is given
in Section 3. In Section 4, we document the application of
different modeling techniques to our reference design. Section
5 compares the simulation behavior of the models regarding
performance and accuracy. The paper is concluded in Section
6.

II. RELATED WORK

The MPSoC design space is significantly extended by the
application of versatile on-chip network structures. To this end,
great effort is put into the development of dedicated NoC
simulators. Of these, several are implemented using SystemC
and TLM modeling techniques, e.g., PPNOCS [?], NIRGAM
[?], NOXIM [?] and NOSTRUM as part of NNSE [?]. These
tools allow exploration of different network topologies, routing
algorithms, buffer sizes, and virtual-channel techniques. Based
on user-defined characteristics, the simulation is executed,
providing various functional and nonfunctional information re-
garding performance, latency, and power consumption, making
these tools useful for analyzing the impact of different traffic
patterns on a chosen design. It is however complicated to
assess the actual timing accuracy and simulation performance,
as these general-purpose simulators are typically not based on
synthesisable hardware models.



The solution presented in NAXIM [?] combines a SystemC-
based NoC simulator with the open-source QEMU CPU
emulator. By executing the CPU emulators and the network
simulation in separate processes, NAXIM takes advantage
of multi-core and cluster environments. A high simulation
performance is achieved at the cost of timing accuracy.

A cycle-accurate NoC simulator is presented in BookSim
[?], but a direct evaluation of the simulation performance
against an RTL implementation is lacking.

In contrast, our work aims at creating a complete Sys-
temC/TLM 2.0 platform providing a variable timing accuracy
enabling fast and accurate simulations. Manually abstracted
from the RTL network design defined in [?], we developed
an adjustable TLM router design, significantly increasing the
simulation performance.

Methods for automatically abstracting existing RTL IP cores
are presented in [?]. But due to limitations regarding the
language support and abstraction degree results are still not
comparable to manual abstraction. A different approach is
presented in [?], where the NoC simulation is offloaded to
a parameterized FPGA design. While achieving a very high
simulation speed, the configuration flexibility is lacking.

Our NoC design will be integrated into the SoCRocket
framework [?], allowing generation of versatile virtual plat-
forms accelerating the design-space exploration. All utilized
IP-cores are available as approximately- and loosely-timed TL
models as well as synthesisable RTL implementations, thereby
allowing the usage throughout the complete MPSoC design
process.

III. BASICS AND BACKGROUND

A. Reference NoC design

In order to establish a fair comparison between the proper-
ties of different abstraction layers, a reference NoC model is
selected. This RTL model was designed, optimized, and tested
separately by a different development team [?]. An exemplary
configuration is shown in Figure ??. The system is organized
as a two-dimensional mesh consisting of nine interconnected
nodes wherein every node is formed by a router in the middle
linked to up to four tiles. Tiles themselves can consist of
complete subsystems, memory, or any other custom hardware.

The Network is composed of a set of interconnected routers
and comprises the following characteristics [?]:

• Mesh based topology: Each router provides eight full-
duplex links to connect neighboring routers, and up to
four uplinks.

• Wormhole switching: Packets are subdivided into flow-
control units (Flits) of 140 bit each.

• Virtual channels: Congestion is reduced by implement-
ing 8 virtual channels per router-input port.

• Pipelined arbitration: Flits are further subdivided and
transmitted in a fixed sequence to allow waitstate-free
forwarding.

• Source routing: The path of a data stream is predeter-
mined and allows for resource efficient implementation.

• Mixed criticality: A QoS scheme is implemented to guar-
antee bandwidth requirements for critical data streams.

Fig. 1: Configuration of the reference network[?]

The router model is highly optimized with regards to
occupied chip area and propagation delays. These steps are
necessary when finalizing a RTL model, but result in a higher
design complexity and interfere with further development and
general maintenance. In addition with the poor simulation
performance of large RTL designs, extensive design-space
exploration is rendered unfeasible and hence the flexibility of
the entire design process is strongly reduced.

B. Transaction Level Modeling (TLM 2.0)

Modeling on the transaction level reserves a certain ambigu-
ity regarding timing annotation. Developers have the freedom
of directly catering to specific simulation requirements. Early
software development, for example, values high simulation
performance over exact timing behavior. In contrast, correct
behavior and timing are the main concerns of system develop-
ers. To fulfill both needs, the TLM 2.0 standard defines two
distinct coding styles [?]:

• Approximately timed: High temporal resolution of bus
accesses by defining four separate timing points to indi-
cate begin and end of request and response respectively.
It allows precise exploration of behavior and performance
at the cost of additional simulation overhead.

• Loosely timed: Here, a transaction is only defined by
its start and end point, thereby reducing the simulation
overhead at the cost of precision. This is advantageous
for extended simulations and software development.

Both coding styles focus on the temporal resolution of
bus accesses. As the allocation of the global communication
medium is of high importance for a processing system, directly
translating these coding styles to a distributed interconnection
network will not yield the desired result. As packet based
networks usually have well-defined behavior regarding the
length of a single transaction, defining frames, packets or flits
with a fixed size reduces the benefits of high-detailed timing
points for every transactions.

Looking at the end-to-end behavior of a network, the focus
shifts towards the accumulated delay of a package when
it reaches its destination. This latency is composed of a
fixed component (best-case propagation latency, depending of



the hop count) and a dynamic component (delay caused by
congestion). Varying the accuracy of the dynamic component
can now be used to achieve a comparable flexibility regarding
timing and simulation performance. To capture precise latency
informations, the status of the network has to be tested for
possible congestion after every transaction (Figure ??, left).
This will obviously result in significant simulation effort, how-
ever, when the fixed component of the latency is sufficient, the
simulation performance can be greatly increased by ignoring
congestion altogether. This allows traversing the whole net-
work in an undisrupted transaction sequence (Figure ??, right).
To avoid confusion, these modeling styles will subsequently
be called timed (capturing congestion) and untimed (ignoring
congestion) modeling styles.

Methods for estimating the latency caused by congestion
without fully modeling it are presented in [?] but not currently
incorporated in this work.

C. Abstraction goals

The most commonly applied simulation strategy for hard-
ware designs is the event-based simulation model. Tools are
available and in use for all major hardware description lan-
guages (VHDL, Verilog and SystemC [?]). Here, the behavior
of a hardware model is represented through a set of discrete
events in time. This allows efficient simulations, since in
contrast to cycle-based techniques only real state transitions
are elaborated. As the simulation performance is a major
concern of this work, it is important to identify the properties
that contribute most to execution effort. Behavior described
on the RTL consists of numerous parallel processes triggered
by signal transitions. In so-called delta cycles, the involved
processes are evaluated separately and their output signals are
synchronized causing other processes to trigger until a stable
state is reached. This results in significant runtime overhead
consisting of context switches and synchronization [?]. By
raising the abstraction, the functionality can be expressed
through sequential code and thereby reduce the runtime over-
head. Among others, this aspect is a important concern when
abstracting an RTL model, cumulating in the following TLM
design goals [?]:

• Speed: Raising the simulation performance is necessary
for enabling a cost-effective and flexible design process.

• Accuracy: Disregarding timing accuracy will result in
unreliable simulation results. Depending on the use-case,
a compromise between speed and accuracy must be
established.

• Productivity: Disregarding specific RTL implementation
details in early design-space exploration allows for higher
productivity and maintainability.

IV. MODEL ABSTRACTION

A. Data and Timing Abstraction

When abstracting the data representation of an RTL model
it is important to identify the right granularity. The smallest
individually routeable transfer units will allow a accurate
reproduction of the routing and congestion behavior, while
minimizing the number of individual transactions. Data on the
lowest layer of the presented reference design is organized
as 35 bit wide phits. This enables a 4 step pipeline based
arbitration parallel to the arrival of a flit. As this computation
on the TL can be combined into a single sequential process
removing the necessity to subdivide flits. Concentrating the
transmission of a flit into a single function call significantly
reduces the simulation effort. This also circumvents the need to
physical copy the data from one signal vector into another, as
only a object reference is passed. The corresponding delay is
then annotated as an additional parameter allowing the receiver
to synchronize the transaction if needed.

The transfer protocol implemented by the reference RTL
model defines precise bit ranges to represent control in-
formation regarding the route, virtual channel and other
data flow signals. Abstracted to the TL, payload and con-
trol information is divided and handled individually, increas-
ing the flexibility and aiding further development. To this
end the TLM 2.0 library supplies a basic transport objects
(generic_payload_object [?]) implementing typical
bus protocol functionality and the freedom to add custom ex-
tensions. Allowing the developer to encapsulate functionality
(for example the routing) into specific classes to hide the
implementation and thereby allowing modifications without

Simulator Router 0 Router 1 Router 2

... ...

... ...

Simulator Router 0 Router 1 Router 2

... ...

... ...

simulation 
time: n 

simulation 
time: n + 1

simulation 
time: n + 2

simulation 
time: n 

simulation 
time: n + 1

transport call

transport call

transport call

transport call

activation

activation

activation

activation

Fig. 2: Synchronization after every hop (timed modeling; left), synchronization after arrival (un timed modeling; right)



influencing other parts of the model. For the efficient handling
and reuse of these transport objects it is recommended imple-
ment an ad hoc or dedicated memory manager to prevent the
costly new allocation for every transaction [?].

B. Timed Model

To assess the actual performance and throughput of an
on-chip network the simulation model requires a sufficient
timing accuracy. The congestion behavior must be reproduced
correctly to achieve realistic packet latencies and arrival order.
Therefore the simulation model performs a synchronization
between competing data streams after every hop to conduct
the arbitration and QoS selection (see Section ??). To reduce
the runtime overhead, our approach implements a queue based
synchronization only requiring a single thread per router. The
explicit coordination between threads is avoided by inval-
idating incoming flits according to there transaction delay
(Figure ??). At point t0 the complete flit is received and
stored. But it can only partake in the arbitration when the
annotated transaction delay has passed at t1. Thereby the
execution order of the routers does not influence the outcome.
In contrast, when directly applying the LT and AT coding
styles, at least one respectively two dedicated threads are
required per transaction. Performing transactions of all router
ports through a single thread reduces the overhead and the
memory footprint.

clk

data 
in phit 0 phit 1 phit 2 phit 3

phit 0data
out

t1

receive 
flit

schedule & 
transmit

t0

delay (input buffer)

T
im

e
d

 T
LM

implicite 
synchronization by 

enqueueing flits

previous flit

following flit

R
TL

Fig. 3: Synchronization of neighboring routers via timed
invalidation

The resulting router architecture still has a strong resem-
blance of the reference model (Figure ??). But strictly apply-
ing object oriented programming techniques significantly in-
creased the flexibility and maintainability. When optimizing a
hardware layout with regard to propagation delay and occupied
chip area it is not always possible to localize functionality to
there designated modules. Unrestrained by these restriction the
timed TL model encapsulates key functionality regarding the
network characteristics (arbitration and QoS) into separated
classes. The use of general interface definition of these classes
enables independent development of alternative implementa-
tions. This increases the general design productivity as well
as the exploration of different arbitration and QoS schemes.

As part of the TLM 2.0 library a set of socket imple-
mentations are provided to facilitate the connection between

modules. Of these the multi pass through initiator and target
sockets are used to create a full duplex connection between
neighboring routers. Unlike typical RTL entity ports these
multi sockets allow to construct N:M connections. By con-
structing each router with a target and initiator socket it
becomes possible to configure any arbitrary topology beyond
the scope of the reference model.

Call-back functions are bound to the target socket to facil-
itate the actual transaction. Here the TLM standard describes
the use of blocking and nonblocking functions depending on
the chosen coding style. But as stated in Section ??, for
networks the focus of timing accuracy shifts from individual
transactions to the coordination between data streams. For the
benefit of performance, our model implements nonblocking
transport functions, as the timing behavior is modeled via
buffer invalidation instead of explicitly blocking the initiator
thread. Blocking the initiator would require individual threads
for every router port and hence cause significant overhead.
The functions are bound at configuration time, allowing for
our model to differentiate between timed and untimed imple-
mentation at configuration time.

As shown in Figure ??, incoming transactions are differenti-
ated into flits and flow control signals named credits. Flits are
stored into the input buffer and invalidated according to their
transaction delay. Credits are registered by the credit counter
representing a freed buffer location of a downstream router.
The only active submodule is the arbiter. It is invoked when
there are valid flits requesting to be forwarded. Fully contained
in the arbiter are the scheduling and QoS modules which
implement generic interfaces definitions. After a successful
arbitration the corresponding flits are transmitted trough the
switch fabric module accessing the initiator socket.

input buffer
data 

buffer

credit counter

vc access

switch arbiter

scheduler
QoS

switch fabric

target 
socket

initiator 
socket

flits

credits

SC_THREAD

send flit()
send credit()

timed transport 
function

Fig. 4: Router architecture of the timed simulation model

C. Untimed Model
As stated above, for some use cases simulation perfor-

mance is more desirable than the accurate reproduction of
packet latencies. For example, extended hardware/software
co-simulations as part of early software development benefit
greatly as there is no direct interest in the subjacent architec-
ture. Our untimed simulation model therefor assumes a con-
gestion free transmission resulting in latency only depending



on the hop count. In addition temporal decoupling is used to
perform all transactions from source to destination in a single
simulation step. For this model the obligation to synchronize
a package goes over to the receiver (if it is necessary).

The resulting architecture differs greatly to the timed model
as flits are not stored or synchronized to competing data
streams. By not storing the flits along their route the need
for flow control is also omitted. The resulting router model
only consists of the transport function and the switch fabric
directly connected to the corresponding sockets.

switch fabric

target 
socket

initiator 
socket

untimed transport 
function

update route

Fig. 5: Router architecture of the untimed simulation model

V. EVALUATION

A. Test Configuration

The main interest of this work lies with simulation per-
formance and timing accuracy. Therefore, a simple all-to-all
traffic pattern is applied to the network. Traffic generators
and receivers are connected to every router (Figure ??),
sequentially sending packets to all other receivers without
any wait-states. The resulting high network load and frequent
congestion are very demanding, minimal deviations from the
reference behavior will quickly cause high latency and flit-
sequence errors.

tx
rx

tx
rx

tx
rx

tx
rx

tx
rx

tx
rx

R0 R1 R2

Rn Rn+1 Rn+2

Fig. 6: 2D mesh NoC topology test configuration with traffic
generators and receivers

The packet generators/receivers are implemented natively in
VHDL and SystemC to allow fair performance comparisons
of the abstraction levels. Questasim version 10.1d is used for
the RTL simulations and OSCI SystemC 2.3.0 simulator for
the TL models. Both were executed on a 3GHz Intel i7 64-Bit
Windows 7 PC with 8 GB of RAM.

B. 8x8 NoC Measurements

To generate a high simulation effort, this configuration uses
the biggest number of routers supported by the reference
design. With 64 routers connected to an 8x8 two-dimensional
mesh, traffic is generated from 10 up to 100 all-to-all iterations,

consisting of one packet to each other router. At 5 flits per
packet, this cumulates into the handling of 2.016.000 flits
at 100 iterations. The resulting simulation execution-time is
displayed logarithmically in Figure ??. Herein, the untimed
TLM model achieves a speed-up ranging between 1453 and
2031 compared to the RTL simulation. The higher-accuracy
timed TL model still achieves a speed-up ranging from 162
to 175 compared to the RTL simulation.

20 40 60 80 100

100

101

102

103

#Iterations

Si
m

ul
at

io
n

Ti
m

e
[s

ek
]

untimed
timed
RTL

Fig. 7: 64 router NoC simulation speed (logarithmic) of timed,
untimed and RTL models

Assessment of the timing accuracy is done by capturing the
end-to-end latency of every flit. The comparison of the average
latencies is shown in Figure ??. By not modeling congestion,
the untimed model assumes the best-case latency only depend-
ing on the average hop count. The average deviation of timed
model is never greater than one clock cycle (the individual
flit end-to-end latency error never exceeds three clock cycles),
allowing precise behavioral analysis at significantly higher
performance compared to the RTL model.

10 20 30 40 50 60 70 80 90 100
0

25
50
75

100
125
150
175
200
225
250

#Iterations

A
vg

L
at

en
cy

in
cl

oc
k

cy
cl

es

untimed
timed
RTL

Fig. 8: Avg. flit latency in a 64 router NoC

C. Large NoC Simulations

Further exploration was done with varying network dimen-
sions. Results are shown in Figure ??. At constant 10 all-to-all-
iterations the router count varies from 9 to 2500. Simulations
of 50x50 networks causes a high number of individual threads
to be handled by the SystemC simulation kernel. The timed



simulation model requires one thread per router and one thread
per traffic generator. Scheduling up to 5000 threads in a
single threaded simulation process results in numerous context
switches and high run-time overhead. Future accelerating of
large on-chip networks may be achieved by application of
a parallel simulation kernels as presented in [?] and [?].
Minimizing the cost of synchronization will become a major
goal when high accuracy is needed.

10 20 30 40 50

10−1

100

101

102

103

104

105

#Mesh Dimension

Si
m

ul
at

io
n

Ti
m

e
[s

ek
]

untimed
timed
RTL

Fig. 9: 9 - 2500 router NoC simulation speed (logarithmic) of
timed, untimed and RTL models (RTL model supports up to
8x8 routers)

VI. CONCLUSION

In this paper we demonstrate the performance and flexi-
bility benefits of a raised modeling abstraction applied to a
RTL NoC model. By translating and applying the TLM2.0
coding styles to a reference design we developed a simulation
model with adjustable timing accuracy. Our timed simulation
model was able to accurately reproduce the reference behavior
while accelerating the simulation up to 175 times. Further
acceleration was achieved at cost of accuracy. Assuming zero
load conditions, our untimed simulation was executed up to
2031 times faster than the RTL model. In addition the design
productivity was further raised by application of modern
software engineering techniques. Allowing faster development
and easier maintenance in the future.

Applying high performance simulation models will simplify
the design of larger on chip networks. Moreover, supplying
efficient virtual prototypes enables accelerated software devel-
opment and verification.

VII. ACKNOWLEDGMENT

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
n 621429 and from the German Federal Ministry of Education
and Research (BMBF), funding contract 01IS14002O.


