
ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 1 of 24

Embedded multi-core systems for

mixed criticality applications

in dynamic and changeable real-time environments

 Project Acronym:

EMC²

Grant agreement no: 621429

Deliverable

no. and title
D1.8 – Dependability services of the EMC2 architecture

Work package WP1 SOA Embedded Systems Architecture

Task / Use Case T1.6 Safety and Fault-tolerance Concept

Subtasks involved T1.1 Requirements and Specification

Lead contractor Infineon Technologies AG

Dr. Werner Weber, mailto:werner.weber@infineon.com

Deliverable

responsible

Alten

Detlef Scholle, detlef.scholle@alten.com

Version number v1.6

Date 27/04/2016

Status Final

Dissemination level PU / CO (Section 7)

Copyright: EMC2 Project Consortium, 2016

mailto:werner.weber@infineon.com
mailto:detlef.scholle@alten.com

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 2 of 24

Authors

Partici-

pant

no.

Part.

short

name

Author name Chapter(s)

02F VIF Mario Driussi

Helmut Martin

All Chapters + T1.6 Internal Report

11A Alenia Marco Terrone Chapter 7.2/7.6 + T1.6 Internal Report

02C IFAT Stefan Berger

Alexander Lipautz

Chapter 7.1 + T1.6 Internal Report

16A Chalmers Ioannis Sourdis Chapter 7.3 + T1.6 Internal Report

15O SevenS José Luis Gutiérrez Chapter 7.5 + T1.6 Internal Report

16M Alten Detlef Scholle Chapter 7.6

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 3 of 24

Document History

Version Date Author name Reason

V0.01 06/03/2016 Mario Driussi Initial draft

V0.02 11/03/2016 Mario Driussi Updated chapter 1-9

V0.03 20/03/2016 Mario Driussi Updated chapter 1-9

V1.0 21/03/2016 Mario Driussi Updated chapter 1-9

V1.1 22/03/2016 Marco Terrone Chapter 8

V1.2 23/03/2016 Mario Driussi Updated all chapters

V1.3 24/03/2016 Helmut Martin Update of document

V1.4 01/04/2016 Atul Yadav Review of document

V1.5 06/04/2016 Mario Driussi Revision of document after review

V1.6 26/04/2016 Jan Deventer Release

27/04/2016 Alfred Hoess Final editing and formatting, deliverable submission

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 4 of 24

Publishable Executive Summary

The scope of this document is to provide information about dependability and Service Oriented

Architectures (SOA) for multi-core devices.

The goals are:

 To integrate embedded multi-core devices in a safe and secure manner, because existing Service

Oriented Architectures (SOAs) are not sufficient in their characteristics in context of

dependability requirements demanded by critical applications.

 To investigate existing SOA concepts and elaborate additional requirements for a dependable

Service oriented Architecture (dSOA).

Figure 1: SOA and safety standards have to be merged in order to run dependable services on a multi-core

device

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 5 of 24

Table of contents

1. Objective and scope of the document .. 7

1.1 Structure of the deliverable report .. 7

1.2 Requirements .. 7

2. Introduction ... 8

3. Dependability .. 11

4. Dependable simple service and dService contract ... 13

4.1 Configuration launcher service ... 14

4.2 State manager service ... 15

4.3 Execution manager service ... 15

4.4 Communication manager service ... 15

4.5 Mode management service ... 16

4.6 Memory protection service ... 16

4.7 Error detection service .. 16

4.8 Fault detection service .. 16

4.9 Monitoring service ... 19

4.10 Resource manager service .. 19

4.11 Requirements Validation: ... 19

4.12 Diagnostic manager service .. 19

4.13 Reconfiguration manager service ... 19

4.14 Software manager service ... 20

4.15 Modular Design .. 20

5. Development lifecycle process .. 21

6. Conclusions ... 22

7. Partner contributions (consortium confidential part of the report) .. 23

8. References ... 23

9. Appendix A ... 24

9.1 T1.6 Internal Report ... 24

9.2 Abbreviations ... 24

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 6 of 24

List of figures

Figure 1: SOA and safety standards have to be merged in order to run dependable services on a multi-core device .. 4
Figure 2: Simple Service oriented architecture from W3C ... 8
Figure 3: AUTOSAR Software Architecture – Components and Interfaces ... 9
Figure 4: Overview dependability tree from “Dependability and Resilience by Jean-Charles Laprie” 12
Figure 5: Dependable Simple Service ... 13
Figure 6: Dependable Simple Service with dService Contract ... 13
Figure 7: General dSOA overview, green blocks supports dependability... 20

List of tables

Table 1: Abbreviations .. 24

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 7 of 24

1. Objective and scope of the document

In a highly interconnected world of (embedded) devices, also known as the Internet of Things (IoT), more

and more safety critical devices and applications are getting interconnected. The goals are:

 To integrate embedded multi-core devices in a safe and secure manner, existing Service Oriented

Architectures (SOAs) are not sufficient in their characteristics in context of dependability

requirements demanded by critical applications.

 To investigate existing SOA concepts and to work out additional requirements for a dependable

Service oriented Architecture (dSOA).

Security topics investigated in Sub-Task 1.5 and dynamic runtime behavior investigated in Sub-Task 1.4

are out of scope for the work here.

1.1 Structure of the deliverable report

We start with an introduction in chapter 2 and an overview about general SOA concepts and related

architectures form the automotive domain (AUTOSAR and SOME-IP), followed by definition of

dependability in general in chapter 3. Chapter 4 provides a list of general required services and a short

description of each service for a dependable Service oriented Architecture (dSOA). Chapter 5 explains the

main barrier to build a dSOA followed by a conclusion in chapter 6. Chapter 7 provides information

about partner contributions and chapter 8 gives an overview about the related Living Labs in the EMC2

project. Chapter 9 provides links with references. Chapter 10 “Appendix A” provides additional

information about the related working document of Sub-Task 1.6 in WP1 in the document

“EMC2_T1.6_InternalReport_v1.0”, containing more detailed information about the specific partner

contributions concerning safety and fault-tolerance.

1.2 Requirements

Task T1.1 has collected requirements from the other Work Packages and Living Labs. From this list, we

have extracted the relevant architectural dependability and added them to the corresponding services in

chapter 2. The complete list of the technical requirements is available at EMDesk [19].

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 8 of 24

2. Introduction

Today about 90% of the daily computation power is consumed on embedded devices (such as cell phones,

smart homes, pacemakers, etc.). These embedded devices interact with the physical world. The software

complexity grows up in this highly interconnected world. Such complex software is error prone and bugs

are unavoidable. To reduce complexity and provide an infrastructure new software architectures are

needed. Service oriented Architecture (SOA) is one beneficial approach to handle the complexity and to

avoid/reduce bugs. SOAs are widely spread across the World Wide Web (WWW) applications. Web

Services (WS) for example are standardized by the World Wide Web Consortium (W3C) 1 and prosper in

several business application systems like Enterprise Business Services (EBS).

Furthermore, SOAs have several properties, which make them very powerful and successful. These

properties are based on design patterns and best practice methods, which are well known from different

software development and development life cycle processes. That makes them very efficient with respect

to reusability and time to market aspects.

Classic SOA consists of a Service Registry/Repository (Service Broker), Service Providers and Service

Consumers. A service contract belongs to each service (see Figure 2).

Figure 2: Simple Service oriented architecture from W3C2

General SOAs originate not in the context of safety critical applications running on industrial embedded

multi-core systems. The roots of SOA and the main requirements are coming from business application

development. Commonly we see that services are unassociated, loosely coupled units of functionality that

are self-contained.

A service description contains all required information to understand the functionality and serve as

implementation specification. The service contract expresses the service capabilities. Based on the

contract every other service (developer) knows how to use it, and how the interfaces look like (formal

interface description). Furthermore, services should be loosely coupled and stateless. The objective for

loose coupling is to reduce bindings between services, so that one service can be updated or changed in a

manner that such a change or update does not break the existing relationship between a compound of

services which are building a system. Statelessness supports this in order to design scalable services by

separating them from their state data whenever possible.

Services are also discoverable and composable. Discoverability supports reusability because services can

be found and used by its customers via a repository. In a System or a System of Systems several services

are interlinked and build a new system based on their compensability.

1 https://www.w3.org/Consortium/
2 https://www.w3.org/2003/Talks/0521-hh-wsa/slide5-0.html

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 9 of 24

Nevertheless, for embedded multi-core systems with real-time constrains and safety requirements

additional properties to design a dependable Service Oriented Architecture (dSOA) for an embedded

multi-core system are needed. SOA provides two approaches for the development of a service. The code

first approach and the contract first approach. For a dSOA the contract first approach should be applied.

Since it is very hard to find the right method(s) for assessment of an existing services or systems.

A System based on a SOA, which has real-time, safety and security constraints is the AUTomotive Open

System ARchitecture (AUTOSAR).

Figure 3: AUTOSAR Software Architecture – Components and Interfaces3

AUTOSAR is an approach to use the benefits of service orientation, however it has some important

restrictions towards SOA as used and applied for Web Service (WS). One important restriction is that

dynamic behavior at runtime is not supported whereas dynamic behavior at runtime is one of the key

features from a SOA. Nonetheless, a static design at runtime has important advantages with respect to

safety and real-time constraints. For example, a static system can be analyzed and configured offline to

guarantee the required runtime behavior when the system is online. That is for safety critical real-time

applications an important case.

AUTOSAR offers some mechanisms for dynamic replacement of functions. RTE mode switches, starting

and stopping alarms and tasks (to influence performance), starting and stopping OS applications but this

needs a static configuration before build time.

Nevertheless, AUTOSAR supports since version 4.x with the SOMEIP Stack (Scalable service-Oriented

MiddlewarE over IP) a service oriented concept. SOMEIP is an automotive middleware solution designed

to run on different operating systems and devices. SOMEIP supports Remote Procedure Calls (RPC)

Service Discovery (SD), publish and subscribe (Pub/Sub) which can be seen as typical service oriented

features. A system supporting SOMEIP and AUTOSAR is still static at runtime. This is based on the used

“Open Systems and their Interfaces for the Electronics in Motor Vehicles” (OSEK) conform operating

systems, which are designed to run on devices with very application specific resources. Such kind of

automotive ECU has neither explicit RAM nor several caches. To implement a SOA as known from WS

3 autosar.org

http://some-ip.com/
http://some-ip.com/
http://www.google.at/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjE0tv9943LAhWDzxQKHayODjwQjRwIBw&url=http://www.electronicsweekly.com/news/design/eda-and-ip/mentor-gears-up-tool-suite-for-autosar-2009-04/&psig=AFQjCNGaRgNBeVdCymtEN1nv0rIl3BxDqw&ust=1456318672965680

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 10 of 24

on an embedded multi-core device as used in the automotive domain is due to its restricted HW resources

not possible.

For this, the future AUTOSAR group works on the Adaptive AUTOSAR Platform which supports with

Portable Operating System Interface (POSIX) an interface that allows running much more powerful

operating systems. With this approach general purpose CPUs are coming in the focus. With the

computation power of such devices, a SOA concept is the logical consequence. With respect to safety,

real-time and fault-tolerance the development life cycle needs to be adapted. AUTOSAR will develop and

support both approaches. The classical AUTOSAR Stack which is a static system and runs on an

application specific hardware and the adaptive AUTOSAR platform, which provides the demanded

computation power for future car applications e.g. autonomous driving functions that support dynamic

behavior and runs on a SOA. To fulfill safety, real-time and fault-tolerance requirements a dSOA is

needed.

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 11 of 24

3. Dependability

The dependability of a system is its ability to deliver specified services to end-users so that they can

justifiably rely on and trust the services provided by the system [18]. Dependability includes several

aspects of a system. All aspects are intensely domain, target and application specific. Therefore, with

respect to mixed-criticality and multi-core we define the following attributes for a dSOA:

Attributes are:

 Reliability – continuity of correct service

 Safety – absence of catastrophic consequences for user(s) and environment

 Security – protection against malicious user(s) and misapplication (see D1.6)

 Adaptability – readiness for upgrade and update

 Reusability – readiness to use the service in different systems, devices

 Availability – readiness for correct service

 Maintainability – readiness for modification and repairs

 Integrity – absence of improper system alterations

 Confidentiality – readiness for Trusted Computing (see D1.6)

Threats are:

 Faults – incorrect step, process or data information

 Errors – discrepancy between a computed and specified value

 Failures – event that occurs when delivered service deviates from correct service

Impairments are:

 Attacks (see D1.6)

Means are:

 Fault Prevention

 Fault Tolerance

 Fault Removal

 Fault Forecasting.

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 12 of 24

Figure 4: Overview dependability tree from “Dependability and Resilience by Jean-Charles Laprie”

In the context of T1.6 the main focus is set on fault-tolerance. Nevertheless, Fault Prevention, Removal

and Forecasting are important means in the context of a dSOA. It is arguable that a dSOA has additional

requirements to the executed services itself as well as to the environment (middleware, operating system,

target platform, framework) where they are running on, in contrast to a SOA used for web services.

In the context of SOA, dependability can be seen as a property of a system that provides services, which

are developed with respect to dependability attributes and means to react on threats. To expose the system

threats a Design Reference Mission (DRM) and a HAZOP have to work out on the systems use case. That

could be seen as a general requirement. To design a dSOA the whole Development Life Cycle (DLC) has

to align to an adequate standard. The ISO 26262 [5] and the IEC 61508 [3], which are generally used in

automotive and industrial domains, are not sufficient, because they require that all components already

are know by the development phase. For a dSOA, which builds on existing services (components) it is a

contradiction. The whole architecture must be developed under adequate standards that, fulfills the

dependability requirements. That encompasses the application services, the middleware and the operating

system as well as the hardware platform.

Required Services for a dSOA without security services (see D1.6) are:

 Dependable simple service (application) and dService contract

 Configuration launcher service

 State manager service

 Execution manager service

 Communication manager service

 Mode manager service

 Memory protection service

 Error detection service

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 13 of 24

 Fault detection service

 Monitoring service

 Resource manager service

 Requirements validation service

 Diagnostic manager service

 Reconfiguration manager service

 Software manager service

Furthermore, the operating system has to provide adequate interfaces like POSIX and functionality.

Service descriptions have to be developed under dependability aspects and service contracts need an

extension with dependability attributes.

4. Dependable simple service and dService contract

A service developed under considerations of dependability has to provide additional information to the

middleware, the operating system or the environment to get the required execution time.

Presumed that the service development lifecycle is aligned to an adequate standard and the service has

safety requirements, for example an ASIL (Automotive Safety Integrity Level), real-time constraints (e.g.

10ms cyclic task), or the communication has real-time constraints, the infrastructure has to be aware to

deal with this. For a dependable simple service, this affects primarily the service contract, which provides

information about interfaces and the functionality.

Figure 5: Dependable Simple Service

The service is like a black box, which communicates with its environment via interfaces. The information

“how to use” the specific service and a description about the functionality have to be provided with a

referenced dService contract. That means additional attributes have to be included in the contract based

on a standardized format or an additional contract with the dependability attributes has to be added to the

dependable service or the service contract.

Figure 6: Dependable Simple Service with dService Contract

Dependable

Simple
Service

Dependa
ble

Service

Contract Dependa
ble

Simple
Service

Service

Contract
Dependa

ble

Simple
Service

Service
Contract
Dependa

bility
Attribute

s

Service

Contract
Dependa

ble

Simple
Service

Service
Contract
Dependa

bility
Attribute

s

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 14 of 24

Dependable service contract:

<element name =”Safety”>

 <attribute-Safety>ASIL D

 <attribute-Safety>Process Isolation

 <attribute-FT>Fault-tolerance

 <attribute-FT>RtB

 <attribute-FT>TMR

 <attribute-FT>2oo3D

 …

</element>

<element name = “Execution”>

 <attribute>10ms

 <attribute>cyclic

 …

</element>

<element>Communication

 <attribute>TCP/IP

 <attribute>secure com

 <attribute>end to end protection

 …

</element>

Another important difference between a classic SOA concept and a dSOA for embedded multi-core

devices is that classical SOAs support a dynamic runtime behavior. That means services can be started,

stopped, installed, uninstalled and updated at runtime. OSGI Alliance (former Open Standard Gateway

Initiative) standardizes a hardware independent service platform and provides an open standard. The

OSGI specification describes a modular system and service platform that implements a dynamic

component model. Application or components (services) coming in the form of bundles for deployment,

can be remotely installed, started, stopped, updated, and uninstalled without requiring a reboot. There are

security features implemented but safety, fault tolerance or real-time constraints are not specified.

In the domain of dependability and embedded devices, this is an upcoming approach but it is hard to

guarantee runtime behavior. For this appropriate Probabilistic Risk Assessment (PRA) methods have to

be used in the dSOA concept phase and for runtime assessment of the system.

The following requirements are covered by this section:
TL-REQ-WP01-064, TL-REQ-WP01-065, TL-REQ-WP01-074

4.1 Configuration launcher service

The start up sequence of a multi-core system is a very critical process with respect to safety and security

aspects. For a secure boot process see D1.6 concerning security services. Concerning safety, this means

that the right configuration must be loaded to guarantee expected runtime behavior. Available hardware

must be checked and initialized. In a dependable system set-up, different configurations with respect to

safety must be supported. For freedom of interference that could be memory partitioning and process

isolation. Memory partitioning provides protection by means of restricting access to memory (see

section 4.6 “Memory protection service”).

A hypervisor setup is another approach that manages the hardware, separate cores, and hardware

resources, and hosts different operating systems. A typical hypervisor set-up could run a real-time

operating system like AUTOSAR OS on one core and a standard Linux system on the other core. The

hypervisor manages the shared hardware for the so-called guest systems.

The following requirements are covered by this section:
TL-REQ-WP01-014, TL-REQ-WP01-039, TL-REQ-WP01-054, TL-REQ-WP01-058, TL-REQ-WP01-133

https://en.wikipedia.org/wiki/Bundle_(software_distribution)
https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Reboot_(computer)

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 15 of 24

4.2 State manager service

Web Services should be developed stateless whenever it is possible. This approach is a contradiction to

safety related services. Possible service states are important in a safety analysis. They are also important

for fault-tolerance. If a stateless service is reused in a new system it could be harmful for the whole safety

concept.

A state manager should know the actual state of a service in a system as well as the last state. If a service

uses another local service, the state manager should know the states of both services. If a service uses

external services, devices, sensors or actuators the state manger should be aware about their states. This

could be a state manager to state manager communication, or if necessary one or more global state

managers that are responsible to be aware about the whole system state. Based on the state of observed

services the state manager provides this information to the mode manger.

Other infrastructure services should also provide their states to the state manager service. The execution

manager service should also provide information about services under his administration (e.g. service

running, ready, waiting or stopped). The Memory protection manager should provide states about failed

memory initialization, read or write failures, memory test results at start up, as bad marked memory areas.

The resource manager should provide the resource usage. If there is a state manger depends on the

specific application, the architecture and the safety goals.

The following requirements are covered by this section:
TL-REQ-WP01-066, TL-REQ-WP01-067

4.3 Execution manager service

The execution manager is responsible for providing execution time to services. Typical the execution

manager is part of the operating system. In a dSOA special execution manager(s) should be provided to

support the execution of different kind of services. For example, an “.exe” file is executed by the

windows operating system, for a java-based implementation a java virtual machine is required to execute

the file. The service contract should include detailed information about execution time and required

resources. For a safety critical system, adequate runtime analysis methods should be used (for example

“Worst case execution time analysis”).

The execution manager should provide an intra process communication between tasks, threats and

processes running on different cores, like AUTOSAR OS applications.

Future dSOA design patterns should provide online analysis and reconfiguration in a safe and secure

manner (e.g. use of PRA and other methods for online certification and runtime assessment).

The following requirements are covered by this section:
TL-REQ-WP01-018, TL-REQ-WP01-069, TL-REQ-WP01-072, TL-REQ-WP01-104

4.4 Communication manager service

Safe and secure communication is one of the main challenges in a dSOA. For security related

communication, see D1.7 security services. Concerning dependability in general, this means that the

communication paths have to be available. If necessary, communication paths have to be designed with

redundancies. The communication manager is responsible for keeping communication paths alive and

serving high priority massages preferred.

That means if an Ethernet connection is established between two devices a redundant design requires two

switches. To serve high priority messages first the communication manager has to provide functionality to

fulfill this requirement. That could be implemented with three different queues for example. One queue

for high priority messages one for lower priority and one for messages without safety or timing

constraints. Most communication stacks provide some kind of communication management. Existing

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 16 of 24

communication protocols like CAN and FLEXRAY will be stretched to their limits, because they need a

static configuration. The communication manager is also responsible for the reconfiguration of

communication paths.

The following requirements are covered by this section:
TL-REQ-WP01-056, TL-REQ-WP01-057

4.5 Mode management service

Depending on the criticality of the application a dSOA must support different modes. That means a

normal mode if the system is running as specified, or in case of a failure, error or fault the system must

change the mode to fail-safe, fail-secure, fail-operational, fail-passive to ensure graceful degradation.

4.6 Memory protection service

Memory Protection is important for safety, as well as security. Basically, it is a method for preventing

processes or users from accessing memory which is not allocated to them. The security related aspect of

this service is rather obvious: Malicious intentions or “illegal” user input is blocked with this method.

Especially for systems, which are interconnected and have access to the Internet, this becomes an

important issue.

However, memory protection also plays an important role in terms of functional safety. It is for example a

helpful tool in the development process, because “illegal” behavior of erroneous services can be easily

identified and taken care of. Even more important, it serves as error detection and –containment

mechanism, preventing an error in a single service to propagate and infect the whole system.

The following requirements are covered by this section:
TL-REQ-WP01-039, TL-REQ-WP01-040

4.7 Error detection service

A typical error detection service is the Watchdog Timer. The Watchdog Timer is capable of detecting a

fault, as well as some control flow errors. However, most of the errors remain unnoticed. There are

several approaches in the design of an Error Detection Service, but the most simple and approved one, is

the so-called Triple Modular Redundancy (TMR). With this approach, an Error Detection mirrors three

individual and independent services, which provide the same functionality. With respect to automotive

applications, this could be, for example, services for acceleration measurement. A comparing logic inside

the Error Detection Service compares the information received from these services and can identify an

error in one of the services by means of a simple voting mechanism.

In advance, another service can be triggered for restarting the service in question, or other actions.

The following requirements are covered by this section:
TL-REQ-WP01-123

4.8 Fault detection service

Which fault detection or recovery service are implemented, depends on safety concepts and design

decisions. According to the standard ISO 26262, a fault is an “abnormal condition that can cause an item

to fail”. A failure, in turn, is the incapability of an item to provide its intended functionality. In other

words, it means that the item is broken down or provides erroneous data. An error is the deviation of a

computed, observed or measured value from the theoretical correct value.

Electric systems suffer from numerous different possible faults, which increase with the complexity of the

system, including, not only, internal faults like design-faults or hardware wear-outs, but also external

faults (e.g. example misuse by the user or cosmic radiation).

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 17 of 24

Due to billions of transistors present in advanced electric systems and the various circumstances that lead

to faults, faultless systems remain a utopian dream. Thus, the fault tolerance mechanisms are not actually

concerned with the prevention of faults, but assure that a fault does not lead directly to the violation of the

safety goal(s), which maintain the system in a safe state. This can be referred to by the term “fail

operational” and means that a system is working correctly and reliable, even in the presence of a certain

number of faults. This is, more or less, the key concept of any fault tolerant system.

Failure performance of redundant systems

If a failure in a redundant system occurs, the failure performance can be differentiated in three modes:

 Fail-Safe. Become safe when they cannot operate.

In case of a failure, the system is no longer available and it will switch to a well-defined system safe

state at its outputs. The failure of a component has to be handled by additional counter measures that

lead to the controllable result (e.g. switching from an automatic mode to a manual mode to override

any faulty automatic command).

Examples: Many medical systems fall into this category.

 Fail-Passive. A system failure “does no harm”.

The entire system has to consist of two fail-safe sub-systems and there are fault-detection and fault-

inhibition measures available. Both sub-systems have to compare their output signals. In case of any

difference, the resulting output signal has to be zero, which means that the entire system behavior is

passive.

Example: aircraft autopilots that stop controlling the plane, but won’t steer aircraft in the wrong

direction.

 Fail-Operational. Continue to operate when they fail.

The entire system is still operating in any case of failure and the system will not change to a fault-

state. The entire system has to consist of three sub-systems, which have to provide a fault diagnostic

and fault inhibition service. By using comparison of the three sub-systems a faulty behavior in any of

the sub-systems should be detectable. Such kind of system-architecture is called fault-tolerant. Fault-

tolerant systems avoid service failure when faults are introduced to the system.

Examples: elevators, the gas thermostats in most home furnaces, and passively safe nuclear

reactors.

There are several strategies and concepts in order to make a system “fail operational”:

 Error Detection. An error is the deviation of a computed, observed or measured value or condition

and the expected, theoretically correct value. An error occurs as consequence of unexpected operating

conditions or a fault. The detection of errors is usually done by comparing the results of redundant

elements.

 Error Containment. Error containment is supposed to prevent the propagation of an error across

specified regions. In the actual implementation, the error containment is conducted by means of ECRs

(Error Containment Regions).

 Error Masking. This denotes the dynamic correction of generated errors at runtime and requires

multiple redundant systems and voting systems in order to do that. An example of an error masking

mechanism, which is also provided by the GENESYS architecture, is TRM (Triple Modular

Redundancy). With this method, three independent components execute the same functionality. The

output is then processed by a majority-voting system in order to produce a single output. If any of the

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 18 of 24

three systems is erroneous, the other two are able to correct and mask the error. From the outside, it is

not even visible that a fault occurred[9].

 Diagnosis. This is used for identification of a faulty element, which is responsible for an error. Like

the error masking, this can be conducted by redundant elements whose output is compared by a voting

system.

 Recovery. Recovery is the return of a system to a state, where it able to operate according to its

specification. In the simplest case this means just restarting a faulty component. Prerequisite therefore

is the detection and location of corrupt elements. There exist backward and forward recovery

techniques.

In the following three major fault tolerant designs for recovery of software-intensive services are

introduced:

 Recovery block (RcB) is a backward recovery technique that uses the acceptance test (AT) to check

the outputs of a module; the next alternative is invoked once the former alternative fails the AT. The

executive in RcB is responsible for check point establishment, checkpoint restoration, invocation of

the alternatives, and successful return of RcB. RcB is vulnerable to failure under conditions such as

when (1) checkpoint establishment fails, (2) checkpoint restoration or invocation of the next

alternative fails, or (3) the AT itself fails or no alternative passes the AT.

 N-Version Programming (NVP) is a forward recovery technique that uses the decision maker (DM) to

vote for the outputs of all the involved alternative modules. The executive is responsible for input

distribution and successful return of the NVP block. NVP is vulnerable to failure under conditions

such as when (1) input distribution to the alternatives fails, (2) less than ⌊n/2 + 1⌋ consistent and

correct results successfully reach the DM, or (3) the DM itself fails.

 Retry Block (RtB) is a backward recovery technique that also uses AT like RcB to check the outputs

of a module. Contrary to RcB, RtB retries the same module rather than using another module once the

AT evaluation fails. The original design of RtB requires a data re-expression algorithm (DRA) to

change the form of inputs before reusing the same module, but since in the Webapplications or SOA

systems failures may be caused by temporary service busy or network congestion and it is not always

possible to tailor the DRA for the application, some designs eliminate DRA and use the same inputs

on retry, and this simplified retry mechanism is widely supported in modern SOA execution

environments. This paper considers the latter designs. RtB is vulnerable to failure under conditions

such as when (1) checkpoint establishment fails, (2) checkpoint restoration fails, or (3) the AT itself

fails or the retry limit is exceeded before the AT passes.

A Fault Detection Service (FDS) is a service that is capable of detecting faults, and eventually, depending

on its implementation, also “control flow errors”. Control flow errors are errors, which lead to a wrong

execution sequence of the instructions of a service.

Technically, the FDS can be implemented as simple timer circuit with a specified threshold time. If this

limit is reached, it changes its state, which triggers further actions, like restarting a component or

activating another safety service.

The advantages of the FDS are the simple design, which reduces the additional complexity of the overall

system, as well as the costs. Concerning the functional principle, there are different designs with

increasing complexity, which can provide, for example, a certain time window for the response. The well-

known implementation of this service is the Watchdog Timer (WDT).

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 19 of 24

The following requirements are covered by this section:
TL-REQ-WP01-042, TL-REQ-WP01-057, TL-REQ-WP01-075, TL-REQ-WP01-098, TL-REQ-WP01-099

4.9 Monitoring service

The monitoring service is responsible for supervising all running services and for the notification of

deviant behavior. The monitoring service verifies our claims with respect to dependability.

The following requirements are covered by this section:
TL-REQ-WP01-010, TL-REQ-WP01-023, TL-REQ-WP01-117, TL-REQ-WP01-134

4.10 Resource manager service

The resource manager service is responsible for resource management on the local system. If a new

service is launched for example the resource manager should check availability of required resources

based on the service contract and report resource usage in the lifecycle. The Resource manager should

provide information about resource usage to the state manager to share the resource usage information

with other devices and systems in a safety critical environment.

The following requirements are covered by this section:
TL-REQ-WP01-010, TL-REQ-WP01-015, TL-REQ-WP01-066, TL-REQ-WP01-067,
TL-REQ-WP01-117, TL-REQ-WP01-134

4.11 Requirements Validation:

This service should be responsible for checking the compliance of safety margins, when orchestrating

services to higher level services. For example, if a service is required to be in compliance with ASIL D, it

cannot be based on another service, which can only provide ASIL B.

According to its specification the requirements validation service could either prevent this orchestration,

or even look for possible solutions, e.g. looking for a service with the same functionality, but ASIL D, or

combining two of the ASIL B services.

The following requirements are covered by this section:
TL-REQ-WP01-039, TL-REQ-WP01-041, TL-REQ-WP01-045

4.12 Diagnostic manager service

Online and offline diagnostic services for software and hardware are required for maintenance.

Diagnostic tests can provide significant improvements in the achievement of dependability of a system.

Diagnostic tests should be simple and resource sparing, otherwise system complexity and overhead grows

up.

The following requirements are covered by this section:
TL-REQ-WP01-109, TL-REQ-WP01-117, TL-REQ-WP01-134

4.13 Reconfiguration manager service

If a dynamic runtime behavior is supported, online runtime assessment is required (see D1.9). Recon-

figuration could be also necessary in term of fault-tolerance with respect to backup recovery for example.

A planed reconfiguration should be tested offline to check the consequences on the system behavior with

respect to safety and security and relationships to external systems.

The following requirements are covered by this section:
TL-REQ-WP01-017, TL-REQ-WP01-041, TL-REQ-WP01-057, TL-REQ-WP01-080

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 20 of 24

4.14 Software manager service

If software updates are allowed and services can be started, stopped, installed, uninstalled, updated, and

upgraded at runtime a service load manager is required. If new software is loaded or available the

resource manager has to check if enough resources are available, the safe requirement manager has to

check the safety requirements provided by the service contract and the reconfiguration manager has to

reconfigure the system and update communication path configuration, execution paths, and memory

alignment.

If a new or an updated service is available, the software manager has to provide information about the

contract which includes information about dependability (Unique ID safety contracts, resources, etc.) to

the related safety managers. If the service is accepted, the service can be downloaded.

The following requirements are covered by this section:
TL-REQ-WP01-041, TL-REQ-WP01-076, TL-REQ-WP01-077

4.15 Modular Design

A modular design for a dSOA is, with respect of reusability and general SOA design principles, one of

the key features in terms of efficiency and time to market.

The following requirements are covered by this section:
TL-REQ-WP01-035

Figure 7: General dSOA overview, green blocks supports dependability

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 21 of 24

5. Development lifecycle process

The services required for a dependable SOA are implemented and available in several safety critical

embedded systems with different characteristics and range of functionality. These implementations

however are domain and application dependent. One of the consequences is that they cannot be reused as

suggested by SOAs best practice methods and patterns. Furthermore, they are implemented based on

standards and target devices, which are also domain dependent.

The gap to run a dSOA on an embedded multi-core device(s) which is applicable for different domains

and criticalities is, that there is no domain independent dependable development / system lifecycle

process available which fulfills requirements like dynamic runtime assessment, or assessment of

composeable systems with real-time, safety and security constrains.

Such a generic process for dependable service oriented architectures is required. This process must

support all phases of a product life cycle from the commissioning phase to the decommissioning phase.

This process should provide methods for online certification and runtime assurance to achieve the

required system dependability with respect to safety and security in a dynamic dSOA implementation. A

(general) operating system standard, which supports dependable and dynamic runtime behavior is also

required.

The following requirements are covered by this section:
TL-REQ-WP01-044, TL-REQ-WP01-045, TL-REQ-WP01-046, TL-REQ-WP01-047, TL-REQ-WP01-068

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 22 of 24

6. Conclusions

Not all of the services listed above are stringently necessary. In the design phase of an application and

after a safety and security analysis, when the system safety and security requirements and the functional

safety and security requirements are on the table a reasonable architecture can be defined. Based on the

outcome and verification the required services can be integrated. Note that not every system with

dependability requirements can be implemented as service oriented architecture.

Real-time, safety and security or dependability aspects are not in the scope of actual SOA concepts and

implementations as well as safety or security standards does not support general SOA patterns and best

practice methods.

If a SOA should be implemented for a system with dependability requirements, the whole system /

product lifecycle must be aligned to an adequate dependability standard. Even the infrastructure and the

environment need appropriate assurance and have to be developed aligned to an appropriate standard.

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 23 of 24

7. Partner contributions (consortium confidential part of the report)

8. References

[1] Web Service Specifications https://www.w3.org/2002/ws/Reference no. 2

[2] SOME/IP http://some-ip.com/

[3] IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related

Systems (E/E/PE, or E/E/PES) http://www.iec.ch/functionalsafety/

[4] Basic concepts and taxonomy of dependable and secure computing

http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf

[5] ISO 26262 road vehicles – functional safety – part 1: Vocabulary, 2011.

[6] Obermaisser, R., Kopetz, H., GENESYS – A Candidate for an ARTEMIS Cross-Domain Reference

Architecture for Embedded Systems, Vienna University of Technology, 2009.

[7] Nelson, V., “Fault-tolerant computing: fundamental concepts,” IEEE Computer Society, 1990.

[8] AUTOSAR, “Glossary, AUTOSAR Release 4.2.1,” 2014.

[9] Wikipedia Contributors, “Triple modular redundancy,” Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/wiki/Triple_modular_redundancy, [Visited July 2015].

[10] Yamada, S., Nakamoto, Y., et al., “Generic memory protection mechanism for embedded system

and its application to embedded component systems,” Computer and Information Technology

Workshops, 2008, IEEE 8th International Conference on. IEEE, 2008.

[11] El-Attar, A.M., Fahmy, G., “An Improved Watchdog Timer to Enhance Imaging System

Reliability In The Presence Of Soft Errors,” Signal Processing and Information Technology, 2007

IEEE International Symposium on. IEEE, 2007.

[12] Lund, E., “EMC2 Service architecture,” 2015

[13] Peng, Kuan-Li, and Chin-Yu Huang. "Reliability Evaluation of Service-Oriented Architecture

Systems Considering Fault-Tolerance Designs." Journal of Applied Mathematics 2014 (2014).

[14] IEC 62439, Industrial communication networks – high availability automation networks.

[15] "White rabbit: Sub-nanosecond timing distribution over ethernet" Moreira; P. Serrano, J. ;

Wlostowski, T. ; Loschmidt, P. ; Gaderer, G. International Symposium on Precision Clock

Synchronization for Measurement, Control and Communication, 2009. ISPCS 2009

[16] IEC 61784, Industrial communication networks.

[17] EMC2 D8.4 – Mixed Criticality applications for FCS Scenario and Platform System Design

Requirements (final version)

[18] Laprie, Jean-Claude. "Dependable computing: Concepts, limits, challenges." Special Issue of the

25th International Symposium On Fault-Tolerant Computing. 1995.

[19] EMC2 WP1 Technical Requirements,

FileName: EMC2_WP_ALL_REQ_INCL_REFERENCES_v10.xlsx

EMDesk: https://emdesk.eu/shared/56e2a443c60e1-51f9ebdbd9611f30615c4e1788c4c773

https://www.w3.org/2002/ws/Reference%20no.%202
http://some-ip.com/
http://www.iec.ch/functionalsafety/
http://www.nasa.gov/pdf/636745main_day_3-algirdas_avizienis.pdf
http://en.wikipedia.org/wiki/Triple_modular_redundancy

ARTEMIS Call 2013, project 621429 EMC²

D1.8 Dependability services of the EMC2 architecture Page 24 of 24

9. Appendix A

9.1 T1.6 Internal Report

Additional information about safety and fault-tolerance:
FileName: EMC2_T1p6_InternalReport_v1.0.doc

DocumentTitle: T1.6 Internal Report of Safety and Fault tolerant concepts for SoA Embedded system

Architectures

EMDeskLink: https://emdesk.eu/cms/?p=334&hash=alY3Q7Zm9sZGVyOzEwMTg2cmVkaXJ8

9.2 Abbreviations

Table 1: Abbreviations

Abbreviation Meaning

µC Micro-Controller

ASIL Automotive Safety Integrity Level
AUTOSAR AUTomotive Open System Architecture

CAN Controller Area Network

DRM Design Reference Mission

dService contract Dependable Service contract

dSOA Dependable Service oriented Architecture

EBS Enterprise Business Services

ECU Electric Control Unit

EMC2 Embedded multi-core systems for mixed criticality applications in dynamic

and changeable real-time environments

FlexRay Automotive network communication protocol

HAZOP Hazard and operability study

HW HardWare

OS Operating System

OSEK Open Systems and their Interfaces for the Electronics in Motor Vehicles

POSIX Portable Operating System Interface

PRA Probabilistic risk assessment

QoS Quality of Service

RTE Run-Time Environment

RPC Remote Procedure Calls

SD Service Discovery

SOA Service Oriented Architecture

SOMEIP Scalable service-Oriented MiddlewarE over IP

SOTA Software Over the Air

SW SoftWare

WS Web Service

WWW World Wide Web

TMR Triple Modular Redundancy

https://emdesk.eu/cms/?p=334&hash=alY3Q7Zm9sZGVyOzEwMTg2cmVkaXJ8

