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Things to take away

• We need energy transparency at various levels of software abstraction.

• Energy measurements are not sufficient for energy transparency.

• Bounding energy with Static Resource Analysis (SRA) is a hard
challenge.

• We need techniques that are as much architecture- and compiler-
agnostic as possible.

(Accepted for publication at ACM TACO)
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Presentation Outline

• Motivation and concepts.

• Low level analysis - ISA level energy modeling.

• High level analysis - LLVM IR energy characterization.

• SRA-based energy consumption estimation.

• LLVM IR profiling-based energy consumption estimation.

• Future work.
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Motivation

• How much energy does my code consume when executing on a particular
architecture?

• What is the effect on the energy consumption for a particular processor
when:

1. choosing an algorithm;
2. using different coding styles?

• How to detect energy hot spots in my code?

• Is my application energy budget met?

• How to enable energy-aware compilation?

Hard to answer questions!
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Current Approaches

1. Physical Energy Measurements:

◦ Not accessible to every software developer (special equipment and advance
hardware knowledge needed).

◦ Difficult to capture energy consumption bounds with end-to-end
measurements.

◦ Difficult to achieve fine-grained software energy characterization.

2. Energy Simulation:

◦ Usually at low level of abstraction (architecture).
◦ Can be significantly time consuming.
◦ Can not properly capture energy bounds.

3. Performance Monitoring Counters (PMCs):

◦ Their number and availability are still limited in deeply embedded systems.

4 / 36 EMC2 workshop — Energy Transparency of Deeply Embedded products



Kyriakos Georgiou LLVM IR Energy Consumption Estimation

Low Level energy analysis
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XMOS XS1 Architecture

We focus on the XCORE processor, a 32bit multicore microcontroller
designed by XMOS.

• 64KiB SRAM

• No Cache hierarchies

• Channel based communication
between threads and cores

• Instructions dedicated to comms
& I/O
◦ Not memory mapped

• Peripherals: Software defined
interfaces

• Event driven, no idle loops
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XMOS XS1 threads/pipeline

• Up to eight threads per core

• Four stage pipeline

• Simple scheduling (no branch prediction)

• At 500MHz, 125MIPS per thread for ¡= 4 threads
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ISA Instruction Time Cost

Predictable for the majority of ISA instructions, with some special cases:

• Division

• Communication time is constant on the same core

• Communication time between cores

• Input output on ports time may vary
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Low-Level Analysis - Energy Modeling

Pinstr = Ileak ∗ V + (Cidle + CinstrMNpO) · V 2 · F
where Np = min(Nt , 4)

• ISA based characterization1.

• Multi-threaded energy model.

• Complete instruction set.
◦ With regression-tree capturing harder to reach instructions.

• Voltage/frequency parameterization.

1S. Kerrison and K. Eder. 2015. Energy Modeling of Software for a Hardware
Multi-threaded Embedded Microprocessor. ACM Transactions on Embedded Computing
Systems 14, 3 (April 2015), 56:1–56:25.
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High level energy analysis
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Compiler Intermediate Representation Energy
Modeling

LLVM is a common optimizer and code emitter.

• LLVM IR is the optimum place for resource analysis and energy
optimizations.

• Applicable to many architectures.

• All the information needed for the resource analysis are preserved.

• LLVM IR is closer to the source code than the ISA level.

Existing approaches

• Try to directly model energy at IR level.
◦ Modeling process needs to be repeated for a new architecture.
◦ Can not account for compiler dynamic behavior (code transformations).
◦ Can not account for specific architecture behavior (FNOPs).
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Novel Dynamic Mapping Technique

• Aims to link each LLVM IR instruction of a program with its
corresponding machine specific ISA emitted instructions.

• No loss of any energy costings between the two levels.

• It is target agnostic.

• It is dynamic and can account for compiler or architecture specific
behavior.

• The technique has been formalized.
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Mapping Technique Logic
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Mapping Technique Overview

Source
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Stage 1 : LLVM IR annotation Stage 2 : Mapping, LLVM IR energy characterization Stage 3 : Tuning, LLVM IR BB energy charct. 

Tunning for FNOPs and Phi-nodes significantly improves BBs energy
mapping accuracy.
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LLVM-IR/ ISA Mapping Example
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LLVM-IR/ ISA Mapping Example
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Energy Consumption Estimation
Using Static Resource Analysis
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SRA Results
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Highlights:

• SRA based on the Implicit Path Enumeration Technique (IPET).
• Simulation-based estimation is the baseline for best achievable accuracy.
• Overestimation up to 5.7% for ISA SRA, up to 7.4% for LLVM IR SRA.
• Max observed underestimation of 4%.
• LLVM IR SRA results are within one percentage point error of ISA SRA

results.
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Why soft energy bounds?

• Energy is data depended.

• Use of a data-insensitive energy model and SRA method.

• Finding the data that will trigger the worst case energy consumption is
an NP-hard problem2.

• No method can approximate tight energy consumption upper bounds
within any level of confidence2.

• Worst case energy consumption observed: pseudo-random-generated
data.

• Still the best option among the available techniques.

2J. Morse, S. Kerrison, and K. Eder, On the infeasibility of analysing worst-case
dynamic energy, http://arxiv.org/abs/1603.02580.
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Design Space Exploration using SRA

• The worst-case execution path is actually the dominant execution path.
• Time predictions are omitted due to the architectures deterministic

nature.
• The small error of estimation allows for comparison between different

versions.
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Energy consumption trends for parametric
benchmarks, using regression analysis

Benchmark Regression Analysis (nJ) x
Base64 f (x) = 54.9x + 62.3 string length
Mac f (x) = 15x + 21.1 length of two vectors
Cnt f (x) = 2.4x3 + 17.6x2 + 5.7x + 34.5 matrix size
MatMul f (x) = 14x3 + 17.1x2 + 4.3x + 34 size of square matrices
MatMul 2T f (x) = 18.1x3 + 20.3x2 + 5.7x + 112 size of square matrices
MatMul 4T f (x) = 21x3 + 23.3x2 + 7.1x + 213.1 size of square matrices

• Programmers/ users can predict a program’s energy consumption under
specific parameter values

• Embedding such equations into an operating system (e.g. library function
calls), can enable energy aware decisions:
◦ for scheduling tasks
◦ checking if the remaining energy budget is adequate to complete a task
◦ downgrade the quality of service and complete the task with less energy
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Energy Consumption Variation
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Profiling-Based
Energy Consumption Estimation
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Advantages

• Captures the actual case energy consumption.

• Energy estimations directly into the LLVM IR.

• As much target-agnostic as possible.

• No energy overheads due to instrumentation instructions.

• Can significantly outperform simulation based estimations.

• Allows for fine-grained energy characterization of software components at
LLVM-IR level.
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Profiling-Based Energy Cons. Estimation Overview
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Highlights:

• Emits Basic Blocks traces.

• Block tracing rather than counters.

• Instrumentation code is inserted at the LLVM IR.

• Depends on the mapping technique.

• Clean copy of LLVM IR for the energy estimation.
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Profiling-Based Energy Cons. Estimation Results
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Highlights:

• The average error obtained for the profiling-based estimations is 3.1%,
and 2.7% for the simulation-based estimations.

• The profiling results demonstrate a high accuracy with an average error
deviation of 1.8% from the ISS.
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Profiling VS Simulation Estimation Performance

• Simulation performance is governed by the complexity of the program’s
underlying algorithms.

• Profiling performance is mainly governed by the program size, since
retrieving the BB execution counts incurs a negligible execution time
overhead.

• Examples:
◦ SFloatAdd benchmark, with a O(1) complexity but big code size: negligible

performance gain over the ISS estimation.

◦ Matrix multiplication benchmark (30x30 size matrices), O(n3) but small
code size: a 381 times speedup over the simulation estimation.

• Mapping most time consuming part of profiling.

• There is plenty of space for optimization.
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Future work

• Work in progress: extending the analysis to ARM Cortex M series
processors.

• Use mapping technique and profiler to perform energy-specific
optimizations.

• Account for external to the core activity.
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Thank you!
Questions?

Kyriakos.Georgiou@bristol.ac.uk

Steve.Kerrison@bristol.ac.uk

Kerstin.Eder@bristol.ac.uk
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