
Performance analysis of MCENoC, a Benes̆-based
predictable Network-on-Chip for EMC2 systems

Steve Kerrison, David May, Kerstin Eder

University of Bristol, United Kingdom

24th Jan 2017

HiPEAC 2017, EMC2 workshop

The MCENoC is a switching architecture designed using the principles of
non-blocking Benes̆ networks, combined with formal verification to

provide a predictable interconnect for multi-core mixed-criticality
embedded systems.

How can we evaluate it?

Acknowledgement
The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement number 621429 (project EMC2).

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 2 / 25

The MCENoC is a switching architecture designed using the principles of
non-blocking Benes̆ networks, combined with formal verification to

provide a predictable interconnect for multi-core mixed-criticality
embedded systems.

How can we evaluate it?

Acknowledgement
The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement number 621429 (project EMC2).

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 2 / 25

The MCENoC is a switching architecture designed using the principles of
non-blocking Benes̆ networks, combined with formal verification to

provide a predictable interconnect for multi-core mixed-criticality
embedded systems.

How can we evaluate it?

Acknowledgement
The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement number 621429 (project EMC2).

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 2 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 3 / 25

Motivation: NoC

Existing NoCs can deliver high core-count and high performance. Typical
structures include meshes, hypercubes, toruses and rings. These pose
some challenges:

Not all traffic patterns map well onto each structure.
Congestion can cause reduction in throughput, or in the worst case, deadlock.
Varying costs of communicating between nodes.
Very difficult to guarantee that a low-criticality communication cannot interfere
with a high criticality one.

Even with predictable (cache-less, time-deterministic) cores, this is a
problem.

A predictable processor communicating over an unpredictable
network is no longer a predictable processor!

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 4 / 25

Motivation: NoC

Existing NoCs can deliver high core-count and high performance. Typical
structures include meshes, hypercubes, toruses and rings. These pose
some challenges:

Not all traffic patterns map well onto each structure.
Congestion can cause reduction in throughput, or in the worst case, deadlock.

Varying costs of communicating between nodes.
Very difficult to guarantee that a low-criticality communication cannot interfere
with a high criticality one.

Even with predictable (cache-less, time-deterministic) cores, this is a
problem.

A predictable processor communicating over an unpredictable
network is no longer a predictable processor!

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 4 / 25

Motivation: NoC

Existing NoCs can deliver high core-count and high performance. Typical
structures include meshes, hypercubes, toruses and rings. These pose
some challenges:

Not all traffic patterns map well onto each structure.
Congestion can cause reduction in throughput, or in the worst case, deadlock.
Varying costs of communicating between nodes.
Very difficult to guarantee that a low-criticality communication cannot interfere
with a high criticality one.

Even with predictable (cache-less, time-deterministic) cores, this is a
problem.

A predictable processor communicating over an unpredictable
network is no longer a predictable processor!

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 4 / 25

Motivation: NoC

Existing NoCs can deliver high core-count and high performance. Typical
structures include meshes, hypercubes, toruses and rings. These pose
some challenges:

Not all traffic patterns map well onto each structure.
Congestion can cause reduction in throughput, or in the worst case, deadlock.
Varying costs of communicating between nodes.
Very difficult to guarantee that a low-criticality communication cannot interfere
with a high criticality one.

Even with predictable (cache-less, time-deterministic) cores, this is a
problem.

A predictable processor communicating over an unpredictable
network is no longer a predictable processor!

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 4 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 4 / 25

Benes̆ and Clos style networks

Clos in 1952 [1], defines a three-stage network for telecoms.
Benes̆ network defined by stages of 2-port switching elements [2].
N–N two-party calls with no blocking.
Translates well to VLSI [3].

1

2

3

4

1

2

3

4

5

1

2

(a) Clos

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(b) Benes̆

Figure: Clos / Benes̆ conceptual comparison

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 5 / 25

Benes̆ and Clos style networks

Clos in 1952 [1], defines a three-stage network for telecoms.
Benes̆ network defined by stages of 2-port switching elements [2].
N–N two-party calls with no blocking.
Translates well to VLSI [3].

1

2

3

4

1

2

3

4

5

1

2

(a) Clos

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(b) Benes̆

Figure: Clos / Benes̆ conceptual comparison
Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 5 / 25

Network folding
Consider left-side to be input, right to be output.
Imagine the network folded in half, connecting node input/outputs.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

≡

Node 0
Node 1

Node 2
Node 3

Node 4
Node 5

Node 6
Node 7

Of particular interest to us:
Statically predictable latencies and contention scenarios.
Use this style of network to replace mesh, ring, or hierarchical structures.
The nature of the network gives us guarantees at a software level that have the
potential to simplify mixed-criticality system certification.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 6 / 25

Network folding
Consider left-side to be input, right to be output.
Imagine the network folded in half, connecting node input/outputs.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

≡

Node 0
Node 1

Node 2
Node 3

Node 4
Node 5

Node 6
Node 7

Of particular interest to us:
Statically predictable latencies and contention scenarios.
Use this style of network to replace mesh, ring, or hierarchical structures.
The nature of the network gives us guarantees at a software level that have the
potential to simplify mixed-criticality system certification.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 6 / 25

Network folding
Consider left-side to be input, right to be output.
Imagine the network folded in half, connecting node input/outputs.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

≡

Node 0
Node 1

Node 2
Node 3

Node 4
Node 5

Node 6
Node 7

Of particular interest to us:
Statically predictable latencies and contention scenarios.
Use this style of network to replace mesh, ring, or hierarchical structures.
The nature of the network gives us guarantees at a software level that have the
potential to simplify mixed-criticality system certification.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 6 / 25

Fully routed example

Eight concurrent communications:

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure: An eight-node network using two-port switching elements

Other topologies can be emulated with TDM, e.g. four stages for
N, S, E, W of a 2 D mesh.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 7 / 25

Partitioning example

The network can be partitioned into isolated subnetworks, which can only
route within themselves.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure: 4-way sub-networks created from an 8-way system.

Two sub-networks of nodes: {1, 2, 4, 6} and {0, 3, 5, 7}.
Each sub-network depicted by line style.
Connections whithin node groups determined by middle three stages.
This has benefits for strictly isolated mixed-criticality scenarios.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 8 / 25

Partitioning example

The network can be partitioned into isolated subnetworks, which can only
route within themselves.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure: 4-way sub-networks created from an 8-way system.

Two sub-networks of nodes: {1, 2, 4, 6} and {0, 3, 5, 7}.
Each sub-network depicted by line style.
Connections whithin node groups determined by middle three stages.
This has benefits for strictly isolated mixed-criticality scenarios.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 8 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 8 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.

Property definitions for each specification level.
Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).
Formal verification and switch and network properties.
Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.
Property definitions for each specification level.

Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).
Formal verification and switch and network properties.
Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.
Property definitions for each specification level.

Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).
Formal verification and switch and network properties.
Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.
Property definitions for each specification level.
Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).

Formal verification and switch and network properties.
Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.
Property definitions for each specification level.
Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).
Formal verification and switch and network properties.

Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

MCENoC: Our implementation of a predictable, FV’d NoC

Key features:
Specification at three levels: switching element, network & system.
Property definitions for each specification level.
Benes̆ structure of switching elements, with configurable element size (2, 4, 8, ...
ports).
Formal verification and switch and network properties.
Integration with processor: 32 RISC V cores on FPGA.

More details in MCSoC’16 paper [4].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 9 / 25

Top level view

Claim, activity strobe and data
signals: clm, act, dat.
Flow control & error signals: cts,
err.
N ports, equidistant.
In-band route configuration. Upon
claiming a port, first bits configure the
switches.

N x N

network

r st
c l k

Input Output

cl m[0]
act [0]

er r [0]
ct s[0]

dat [0]

...

c l m[N- 1]
act [N- 1]

er r [N- 1]
ct s[N- 1]

dat [N- 1]

c l m[0]
act [0]

er r [0]
ct s[0]

dat [0]

...

c l m[N- 1]
act [N- 1]

er r [N- 1]
ct s[N- 1]

dat [N- 1]

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 10 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation

Switching elements of size 2b, allowing us to explore the best element size
for scaling purposes. Routing is equivalent for an N × N network,
regardless of b; the number of header bits is always the same.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Connecting node 1 with node 6
When interface is claimed, five header bits clocked in.
Sequence: 0, 0, 1, 1, 0.
Each bit performs in-band configuration of the switch.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 11 / 25

Our implementation
Switching element sizes can be changed, affecting latency, but not
affecting header bits.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(h) Two-port switching elements.

1

2

1
2

3
4

1

2

(i) Four-port and two-port elements.

Figure: Example routes in two equivalent eight-node implementations.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 12 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 12 / 25

What elements of performance do we care about?

We claim latency is fixed... is it really?
How much throughput can be achieved?
How does the system scale in terms of throughput and logic utilisation?
What burdens are shifted into other layers of the system stack?
How to compare to other devices?

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 13 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 13 / 25

Formally proving properties

We use a combination of SystemVerilog Assertion language, and a formal
verification tool.

SVA properties formalise the specification. This helps us to verify that the
specification is correct and unambiguous.
Assertions can be raised in simulation, or explored using a formal verification tool
that demonstrates no counter-example exists.
This also exposes bugs that are due to uncaught specification deficiencies.

This is not a silver bullet.

Large properties that span many clock cycles can be very slow to prove due to
huge state space.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 14 / 25

Formally proving properties

We use a combination of SystemVerilog Assertion language, and a formal
verification tool.

SVA properties formalise the specification. This helps us to verify that the
specification is correct and unambiguous.
Assertions can be raised in simulation, or explored using a formal verification tool
that demonstrates no counter-example exists.
This also exposes bugs that are due to uncaught specification deficiencies.

This is not a silver bullet.
Large properties that span many clock cycles can be very slow to prove due to
huge state space.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 14 / 25

Proof performance

Eleven property definitions.
Multiple instantiations of some properties.
Increases with larger switches (32-port switch examines 1216 property assertions).

2 4 8 16 32
Number of ports per switch

10−2
10−1

100
101
102
103
104

P
ro

of
ti

m
e

(s
)

Figure: Proof time for a single switching element (core).

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 15 / 25

Proof performance

0 10 20 30 40 50 60 70
Total number of ports

0

100

200

300

400
P

ro
of

ti
m

e
(s

)

Switch size
1-bit
2-bit
3-bit

Figure: Proof time for networks of varying size & switching element size.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 16 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 16 / 25

Number of stages

For N nodes, there will be S stages.

Standard Benes̆

S = 2 log2(N)− 1 (1)

Larger switch sizes

S = 2 logB(N)− 1, if ∃x ∈ N | Bx = N. (2)

Latency scales logarithmically with number of nodes. Buffers at edge of
network, software stack will add extra latency.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 17 / 25

Number of stages

For N nodes, there will be S stages.

Standard Benes̆

S = 2 log2(N)− 1 (1)

Larger switch sizes

S = 2 logB(N)− 1, if ∃x ∈ N | Bx = N. (2)

Latency scales logarithmically with number of nodes. Buffers at edge of
network, software stack will add extra latency.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 17 / 25

Practical performance

Synthesis
Eight-node system with four-port switching elements synthesizes to a Kintex-7 at
364 MHz.
Single RISC-V core “PicoRV32” achieves similara.
Multiple PicoRV32 cores further constrain clock.
Network is not the bottleneck.

ahttps://github.com/cliffordwolf/picorv32

Throughput
Eight-node: 2.9 Gbit/s bisection bandwidth.
32-node: 11.6 Gbit/s bisection bandwidth.
Per-node, per-bit-width, 32-node MCENoC achieves 725 Mbit/s
vs. 64-node Epiphany 199 Mbit/s.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 18 / 25

https://github.com/cliffordwolf/picorv32

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 18 / 25

Scheduling

Communications must be scheduled into TDM phases to avoid contention.
If a node must communicate with M other nodes, >= M phases will be needed.
Determining routes used in a single phase is a Matrix permutation problem [5].

If bandwidth requirements varied, communications may be subdivided into further
phases.
Use of TDM with routes motivates a rapid teardown/re-build time.

TDM phase, destination and payload length
P0 P1 P2 P3 P4 P5 P6 …

Source

0 2 6 1 4 1 2 3 ..
1 3 7 0 5
2 4 0 3
3 5 1 2
4 6 2 5
5 7 3 4
6 9 4 7 2
7 1 5 6 3

Figure: Examples of communication phases, revealing overheads and slack.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 19 / 25

Scheduling

Communications must be scheduled into TDM phases to avoid contention.
If a node must communicate with M other nodes, >= M phases will be needed.
Determining routes used in a single phase is a Matrix permutation problem [5].
If bandwidth requirements varied, communications may be subdivided into further
phases.
Use of TDM with routes motivates a rapid teardown/re-build time.

TDM phase, destination and payload length
P0 P1 P2 P3 P4 P5 P6 …

Source

0 2 6 1 4 1 2 3 ..
1 3 7 0 5
2 4 0 3
3 5 1 2
4 6 2 5
5 7 3 4
6 9 4 7 2
7 1 5 6 3

Figure: Examples of communication phases, revealing overheads and slack.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 19 / 25

Scheduling

Communications must be scheduled into TDM phases to avoid contention.
If a node must communicate with M other nodes, >= M phases will be needed.
Determining routes used in a single phase is a Matrix permutation problem [5].
If bandwidth requirements varied, communications may be subdivided into further
phases.
Use of TDM with routes motivates a rapid teardown/re-build time.

TDM phase, destination and payload length
P0 P1 P2 P3 P4 P5 P6 …

Source

0 2 6 1 4 1 2 3 ..
1 3 7 0 5
2 4 0 3
3 5 1 2
4 6 2 5
5 7 3 4
6 9 4 7 2
7 1 5 6 3

Figure: Examples of communication phases, revealing overheads and slack.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 19 / 25

Permutation performance

Evaluation for a schedule where N = M. Payload efficiency indicates ratio
fo data to header.

100 101 102 103 104 105

Number of nodes

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

P
er

m
u

ta
ti

on
cy

cl
e

(s
)

Payload efficiency
99 % 0 %

Figure: Time taken to perform N permutations with 364 Mbit/s/port, considering
a desired payload efficiency and 2-port switches.

This can improve with wider data-path and larger switching elements.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 20 / 25

Permutation performance

Evaluation for a schedule where N = M. Payload efficiency indicates ratio
fo data to header.

100 101 102 103 104 105

Number of nodes

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

P
er

m
u

ta
ti

on
cy

cl
e

(s
)

Payload efficiency
99 % 0 %

Figure: Time taken to perform N permutations with 364 Mbit/s/port, considering
a desired payload efficiency and 2-port switches.

This can improve with wider data-path and larger switching elements.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 20 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 20 / 25

Software benchmarking

Challenge: construct use case, or use existing benchmarks.
Intent: Do both!

First. . .

Benchmark MCENoC against standard benchmarks.
Use Netrace approach to avoid implementing entire SW & peripheral stack [6].

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 21 / 25

py-netrace

Sheet1

Page 1

P P P P P P P P

P P P P P P P P

P P P P+M P+M P P P

P P P+M P P P+M P P

P P P+M P P P+M P P

P P P P+M P+M P P P

P P P P P P P P

P P P P P P P P

Switch

L2 L1D L1I

MC

CPU

W E

N

S

Implementation in Python.
Uses Parsec benchmark tracesa (Alpha
simulation in {Ge}M5).
64-core, 2 GHz system, L1 cache,
64-banks L2 cache, 8 mem controllers.
Mesh: 64 switches. MCs in diamond
configuration.
MCENoC: Doesn’t matter!

ahttp://www.cs.utexas.edu/˜netrace/

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 22 / 25

http://www.cs.utexas.edu/~netrace/

Early results

Comparing a single-cycle uncontended network, mesh and MCENoC:
Mesh network 0.73% slower than uncontended.
MCENoC between 0.45% and 2.10% slower than uncontended, depending on
TDM scheduling pessimism.

Considerations:

MCE2 system not likely to contain caches.
Traffic trace is from a non-deterministic environment: dynamic, not static.
Not embedded benchmarks.
Netrace itself introduces error.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 23 / 25

Early results

Comparing a single-cycle uncontended network, mesh and MCENoC:
Mesh network 0.73% slower than uncontended.
MCENoC between 0.45% and 2.10% slower than uncontended, depending on
TDM scheduling pessimism.

Considerations:
MCE2 system not likely to contain caches.
Traffic trace is from a non-deterministic environment: dynamic, not static.
Not embedded benchmarks.
Netrace itself introduces error.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 23 / 25

In this presentation

Review: Benes̆ and Clos networks.
Implementation: The MCENoC design.
Performance: A multidimensional problem.

Verification.
Link latency and throughput.
Hardware scaling.
Scheduling.
Software benchmarking.

Next steps.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 23 / 25

Next steps

Complete evaluation of scenarios in netrace.
SW stack for RISC-V.
Explore EMC2 scenarios on a fully implemented system.

Potential future work
Combining static and dynamic communication scheduling [7].
Formal verification of the software (kernel).
Fault injection & handling.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 24 / 25

Next steps

Complete evaluation of scenarios in netrace.
SW stack for RISC-V.
Explore EMC2 scenarios on a fully implemented system.

Potential future work
Combining static and dynamic communication scheduling [7].
Formal verification of the software (kernel).
Fault injection & handling.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 24 / 25

Thank you
Contact information

Steve Kerrison, David May & Kerstin Eder
firstname.lastname@bristol.ac.uk

References
[1] Charles Clos. “A Study of Non-Blocking Switching Networks”. In: Bell System Technical Journal (1952), pp. 406–424.

doi: 10.1002/j.1538-7305.1953.tb01433.x.

[2] V. E. Beneš. “On Rearrangeable Three-Stage Connecting Networks”. In: Bell System Technical Journal 41.5 (Sept.
1962), pp. 1481–1492. doi: 10.1002/j.1538-7305.1962.tb03990.x.

[3] Yikun Jiang and Mei Yang. “On circuit design of on-chip non-blocking interconnection networks”. In: 2014 27th IEEE
International System-on-Chip Conference (SOCC). Vol. 40. 8. IEEE, Sept. 2014, pp. 192–197. doi:
10.1109/SOCC.2014.6948925.

[4] Steve Kerrison, David May, and Kerstin Eder. “A Benes Based NoC Switching Architecture for Mixed Criticality
Embedded Systems”. In: IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC 2016) [to appear]. Lyon, France, 2016, pp. 1–8.

[5] Abraham Waksman. “A Permutation Network”. In: Journal of the ACM 15.1 (Jan. 1968), pp. 159–163. doi:
10.1145/321439.321449.

[6] J. Hestness, B. Grot, and S. W. Weckler. “Netrace: Dependency-Driven, Trace-Based Network-on-Chip Simulation”. In:
3rd International Workshop on Network on Chip Architectures (NoCArc). Dec. 2010.

[7] Adam Kostrzewa, Selma Saidi, and Rolf Ernst. “Slack-Based Resource Arbitration for Real-Time”. In: Design,
Automation Test in Europe Conference Exhibition (DATE), 2016. 2016, pp. 1012–1017. isbn: 9783981537062.

Steve Kerrison (UoB, UK) MCENoC performance - HiPEAC’17, EMC2 25 / 25

mailto:firstname.lastname@bristol.ac.uk
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x
http://dx.doi.org/10.1002/j.1538-7305.1962.tb03990.x
http://dx.doi.org/10.1109/SOCC.2014.6948925
http://dx.doi.org/10.1145/321439.321449

