
© Fraunhofer IESE

An automated interference identification

approach

Christoph Dropmann

Christoph.dropmann@iese.fraunhofer.de

Towards INFoRMED - INterFerence Removal MEthoD

© Fraunhofer IESE

2

Shared

Resource
Resource

Introduction

critical SW

Component

SW

Component

critical SW

Component

SW

Component

uses

failure propagation

criticality propagation

failure

traditional fault propagation “interference“ fault propagation

 We define an interference as a cascading failure via a shared resource

 Typical example: Memory corruption, CPU monopolization

 Threat to an integrated system (see AUTOSAR or IMA)

 Can lead to undesired criticality inheritance

© Fraunhofer IESE

3

Motivation

 Current situation

 Movement towards mixed critical systems and more complex platforms

 Methods and techniques deal with interferences caused by:

 Dependencies via Scheduling & Memory

 Physical resource connections (power and temperature)

 Problem

 Complex computation platforms contain heterogeneous services

 Little guidance for interferences caused by

 Logical dependencies within a service?

 Our Solution Idea

 Provide an automated approach for interference analysis of services

 Increases confidence in the completeness of the analysis and

 reduces the impact of human skill and judgment on the analysis quality

© Fraunhofer IESE

4

Solution Overview - INFoRMED

Protection Mechanisms : Protection Model

legacy

protected?
new

yes
no

Service Segregated Service

<< automated >>

model import

<< systematic>>

manual modeling

<< systematic>>

model enrichment
<< automated >>

interference analysis

<< automated >>

protection case generation

<< semi-automated >>

protection assignment

Modelling Language Analysis Method
Segregation Method
based on Protection

Templates

Interference Aspects

© Fraunhofer IESE

5

Solution Overview - INFoRMED

Protection Mechanisms : Protection Model

legacy

protected?
new

yes
no

Service Segregated Service

<< automated >>

model import

<< systematic>>

manual modeling

<< systematic>>

model enrichment
<< automated >>

interference analysis

<< automated >>

protection case generation

<< semi-automated >>

protection assignment

Modelling Language Analysis Method
Segregation Method
based on Protection

Templates

Interference Aspects

© Fraunhofer IESE

6

Solution – Service Interference Identification (1)

 Interference scenarios are analyzed for a shared service (e.g. a platform

service for redundant execution or a memory management service, …)

 The interference identification bases on:

 An interference specification template that allows a structured description

 The interference aspects that defines different, independent classes of

interference

 The modeling language that allows an automated analysis

 The analysis algorithm to extract the interference scenarios

Interference

Scenario

Interference

Scenario

…

Model

Template

Shared

Service

modelling

A
s
p
e
c
ts

© Fraunhofer IESE

7

Interference

Aspects

Behavioral

Service
Configuration

Corruption

Service
Misuse

Temporal

Concurrent
Service

Access Delay

Service
Overutili-

zation

Spatial

Service
Object Over-

Allocation

Service
Object

Corruption

Solution – Service Interference Identification (2)

Specification Template

© Fraunhofer IESE

8

Interference Aspects - Spatial

 Sharing Preconditions / Intention

 The service or parts of it are not supposed to be shared

 I.e.: Access to the service, or service part is limited to one, or a set of

service users

 A Service Object Corruption occurs if

 “ … an unauthorized service user accesses or manipulates a service or

service object”

 Example: Corruption of a data block of a memory management service …

 An Service Object Over-Allocation occurs if

 “… a service user allocates more service objects than specified”

 Requires that service objects can be allocated during run-time

 Example: Over-Allocation of memory (e.g. via malloc), queue entries, …

© Fraunhofer IESE

9

Interference Aspects - Temporal

 Sharing Preconditions / Intention

 The service is shared over time

 I.e.: At any point in time, only one user can access the service

 A Concurrent Service Access Delay occurs if

 “ … a service user access a synchronization mechanisms of a service more

often than expected

 Requires that the service can be accessed from applications in parallel. As

a result the execution time of the waiting/ effected service user increases

 Examples: Using spinlocks in a service implementation, …

 A Service Overutilization occurs if

 “ ... a service user’s maximum contention delay is exceeded”

 Requires that service accesses are arbitrated dynamically. As a result

response time of affected service users increases

 Examples: Overutilization of a service’s job queue

© Fraunhofer IESE

10

Interference Aspects - Behavioral

 Sharing Preconditions

 The service, or parts of it are shared

 I.e.: Different users are allowed to access the service

 A Service Misuse occurs if

 “… a service user erroneously changes implicit the functional behavior of a

shared service”

 Requires that a service is capable of performing actions that have a service-

wide or even system-wide effect

 Example: an application termination leads to an undefined service sate

 A Service Configuration Corruption occurs if

 “… a service user erroneously changes the configuration of a shared service”

 Requires that a service has configuration parameters changeable at runtime

 Example: Reconfiguration of a device driver service

© Fraunhofer IESE

11

Solution Overview - INFoRMED

Protection Mechanisms : Protection Model

legacy

protected?
new

yes
no

Service Segregated Service

<< automated >>

model import

<< systematic>>

manual modeling

<< systematic>>

model enrichment
<< automated >>

interference analysis

<< automated >>

protection case generation

<< semi-automated >>

protection assignment

Modelling Language Analysis Method
Segregation Method
based on Protection

Templates

Interference Aspects

© Fraunhofer IESE

12

Solution– Modelling Language Basic Idea (1)

UML class model of a service:

Operation

e.g. write(BlockID, *RAM)

Service, e.g.

RingBuffer

Attribute

e.g. Data

Enrichment:

- Relations

- Meta scenarios

1..* 0..*

application 1

(causative element)

application N

(affected element)

uses

failure propagation

failure

OutputParameter InputParameter

0..* 0..*

1.

2.

Operation

e.g. peek(RingBufId, *Data)

© Fraunhofer IESE

13

Solution– Modelling Language Basic Idea (2)

Interference Channels

class Peek

«out»

dataPointer

«in» dataSize

«in» RingbufferId

«Operation»

peek

«out»

dataPointer

«in» dataSize

«in» RingbufferId

«Composite Attribute»

Ringbuffer

«Attribute»

Data

«Attribute»

Count

«Modificati...

CopyData

«use»

«provids data»

«use»

«selectes»

«use»

«selectes»

«use»

«modifies» «use»

«selectes»

© Fraunhofer IESE

14

Summary, Limitations and Future Work

 Summary

 We present an automated service interference analysis approach

 Proposed benefits are efficient service segregation and reduction of human

skill- and judgment

 Limitations

 Functional dependencies between service users are currently not

considered (synchronization issues)

 Correctness of a service model depends on human skills

 Future Work

 Completion of the modelling language

 evaluate the analysis with different services

 Integration of protection strategies

