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 We define an interference as a cascading failure via a shared resource 

 Typical example: Memory corruption, CPU monopolization 

 Threat to an integrated system (see AUTOSAR or IMA) 

 Can lead to undesired criticality inheritance 
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Motivation 

 Current situation 

 Movement towards mixed critical systems and more complex platforms  

 Methods and techniques deal with interferences caused by: 

 Dependencies via Scheduling & Memory 

 Physical resource connections (power and temperature)  

 Problem  

 Complex computation platforms contain heterogeneous services 

 Little guidance for interferences caused by  

 Logical dependencies within a service? 

 Our Solution Idea 

 Provide an automated approach for interference analysis of services 

 Increases confidence in the completeness of the analysis and 

 reduces the impact of human skill and judgment on the analysis quality 
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Solution Overview - INFoRMED 
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Solution – Service Interference Identification (1) 

 Interference scenarios are analyzed for a shared service (e.g. a platform 

service for redundant execution or a memory management service, …) 

 The interference identification bases on: 

 An  interference specification template that allows a structured description 

 The interference aspects that defines different, independent classes of 

interference 

 The modeling language that allows an automated analysis 

 The analysis algorithm to extract the interference scenarios 
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Interference Aspects - Spatial 

 Sharing Preconditions / Intention 

 The service or parts of it are not supposed to be shared 

 I.e.: Access to the service, or service part is limited to one, or a set of 

service users 

 

 A Service Object Corruption occurs if 

 “ … an unauthorized service user accesses or manipulates a service or 

service object” 

 Example: Corruption of a data block of a memory management service … 

 An Service Object Over-Allocation occurs if 

 “… a service user allocates more service objects than specified” 

 Requires that service objects can be allocated during run-time 

 Example: Over-Allocation of memory (e.g. via malloc), queue entries, … 
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Interference Aspects - Temporal 

 Sharing Preconditions / Intention 

 The service is shared over time 

 I.e.: At any point in time, only one user can access the service 

 

 A Concurrent Service Access Delay occurs if 

 “ … a service user access a synchronization mechanisms of a service more 

often than expected 

 Requires that the service can be accessed from applications in parallel. As 

a result the execution time of the waiting/ effected service user increases 

 Examples: Using spinlocks in a service implementation, … 

 A Service Overutilization occurs if 

 “ ... a service user’s maximum contention delay is exceeded” 

 Requires that service accesses are arbitrated dynamically. As a result 

response time of affected service users increases 

 Examples: Overutilization of a service’s job queue  
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Interference Aspects - Behavioral 

 Sharing Preconditions 

 The service, or parts of it are shared 

 I.e.: Different users are allowed to access the service 

 

 A Service Misuse occurs if 

 “… a service user erroneously changes implicit  the functional behavior of a 

shared service” 

 Requires that a service is capable of performing actions that have a service-

wide or even system-wide effect  

 Example: an application termination leads to an undefined service sate 

 A Service Configuration Corruption occurs if 

 “… a service user erroneously changes the configuration of a shared service” 

 Requires that a service has configuration parameters changeable at runtime  

 Example: Reconfiguration of a device driver service 
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Solution– Modelling Language Basic Idea (1) 
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Solution– Modelling Language Basic Idea (2) 
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Summary, Limitations and Future Work 

 

 Summary  

 We present an automated service interference analysis approach 

 Proposed benefits are efficient service segregation and reduction of human 

skill- and judgment 

 Limitations 

 Functional dependencies between service users are currently not 

considered (synchronization issues) 

 Correctness of a service model depends on human skills 

 Future Work 

 Completion of the modelling language 

 evaluate the analysis with different services 

 Integration of protection strategies 


