
Mining Concurrency Bugs
Paolo Ciancarini∗‡, Francesco Poggi∗, Davide Rossi∗, and Alberto Sillitti†‡

∗University of Bologna, Italy
{paolo.ciancarini, francesco.poggi5, daviderossi}@unibo.it

†Center for Applied Software Engineering, Italy
alberto@case-research.it

‡Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Abstract—Concurrent programming is becoming more and
more popular due to the wide availability and low prices of
multi-core CPUs. However, writing concurrent code is difficult
and debugging it is even more complex due to a frequent non-
deterministic behavior at run-time. Identifying pieces of code
that are more prone to include concurrency bugs is important
to focus testing activities and improve the overall code quality.
Many research papers investigate approaches to predict the
quality of the code but just a very limited amount address
specifically concurrency problems in multi-core environments.
This paper aims at investigating the use of bug mining techniques
to link together concurrency-related code revisions with the
corresponding issues to characterize concurrency bugs in complex
code bases. Our approach is able to identify such links with high
precision.

Keywords – Concurrency, defects, bugs, empirical study, pre-
diction model.

I. INTRODUCTION

CPUs manufactures are now focusing on the development of
technologies that are able to store more and more cores inside
a single chip, while the computational power of a single core is
almost constant or even decreasing. This is a revolution from
the software point of view because, for the first time since
the introduction of the microprocessor, running software on
new hardware without any modification does not produce any
performance increment. To exploit new CPUs, it is required
to redesign the software to adapt it to multi-core, therefore
redesign algorithms in a parallel way that can be executed by
the different cores at the same time.

Concurrent code is known to be complex and debugging it
means facing several challenges due to the non deterministic
behavior of the code in some cases. This non deterministic
behavior is also present in bug detection, making testing even
more challenging. Testing code can be performed using very
different approaches but all of them belongs to the families of
the static (analyzing the source code without executing it) or
dynamic (executing the code in a controlled environment with
well known inputs) ones.

Therefore, identifying code that is more prone to include
concurrency bugs is important to help developers in finding
such bugs and focus the testing effort.

This aspect is even more important when developers have
to deal with code developed by third-parties [28] in which
there is a very limited knowledge of the details of the code
and when analyzing the code provided is a preliminary step
to integre it in the code base [12] [20].

The paper investigates the evolution of the source code
to identify code that is potentially affected by concurrency
problems. This is a preliminary study aimed at analyzing
the characteristics of concurrency bugs in relation to source
code revisions to help developers in the identification of
concurrency-related pieces of code.

The paper is organized as follows: Section II briefly presents
the state of the art; Section III analyzes the motivation of our
study; Section IV introduces our approach and its application
in a case study; Section V analyzes our findings; Section VI
investigates the main validity threats of our study; finally,
Section VII draws the conclusions and presents future work.

II. RELATED WORK

The amount of literature about bugs analysis and prediction
is huge. However, in this study we focus on a specific subset
of bugs that are related to the concurrency aspects of the code.
This kind of bugs is more difficult to study due to the relative
low frequency of such bugs and the difficulty of a proper
identification.

Many studies in this area deal with the detection [19] [27]
and prediction of bugs [5] [15] [25] [37]. Some studies focus
on specific kinds of concurrency bugs such as data race [7]
[23] [31] [36], atomicity violations [9], or deadlocks [3] [7].
Other studies are more comprehensive and try to include all
categories of concurrency bugs [8] [18].

Some additional studies have been conducted on the prop-
agation of concurrency bugs in the source code [26] [33].

Another important aspect in this kind of research is the
identification of links between the source code (in particular
the specific code revisions) and the issues in the issue tracking
system to locate in a precise way the bug in the code [2][35].
Several techniques have been developed with different char-
acteristics such as patter matching techniques [32], machine
learning techniques [24], and mixed ones [29] [30].

In [2] the authors introduce the problem of linking the
code revisions with the issues reported since the explicit link
between the two system is often missing. They propose an
approach that heavily relies on manual effort to achieve a
high level of reliability. However, this approach cannot scale
to large code bases involving thousands of issues and code
revisions.

In [35] the authors present an approach to link issues and
code revisions based on the analysis of the text provided by



developers and heuristics based on keyword matching such
as “bug”, “fix”, etc. Moreover, they improved the approach
enhancing the analysis using additional features such as:
time frames in which the bugs and issues are reported, bug
ownership and identity of the code committer, text similarity
between the issue and the change logs, etc. In this way they
achieved a 89% precision and 78% recall in linking issues and
code revisions.

In [32] the authors analyze the introduction of bugs inside
software systems and try to link them to bug reports to
characterize the bug introduction process. The identification of
the links between the code and the issues is based on pattern
matching.

In [24] the authors propose a multi-layered machine learning
approach to the problem of linking issues and source code
based on the integration of several simpler approaches already
available.

In [29] and [30] the authors uses a multi-technique approach
to link bugs and issues in large repositories. The techniques
used are based on two data mining approaches and the
approach based on pattern matching developed in [32].

III. MOTIVATION

As evidenced in the previous section, the analysis, identi-
fication, and prediction of bugs are well-studied areas of the
software engineering discipline. However, many of the results
obtained are hardly replicated in other studies for several
reasons including:

• Limited availability of the datasets: many studies rely on
proprietary information that is not available outside the
company in which the study is performed. Therefore, it
is impossible for other researchers to replicate the studies
and verify the applicability of the developed approaches
to different contexts. To cope with this problem, the
recent trend for research in this area is to use open source
projects to develop models and approaches. However, the
structure of open source projects is often different from
the structure of corporate projects where there are hier-
archical structures and often standards and certification
issues.

• Limited availability of the tools: many studies rely on
ad-hoc tools developed to perform data collection and
analysis. Even if such tools are often released to the
public as open source software, they were developed as
research prototypes and they were not designed to be
used or adapted to different contexts. Therefore, in many
cases, reusing such tools to perform studies in different
environments become nearly impossible and a complete
re-development is needed.

• Limited external validity: due to the previous limitations,
many studies suffer from an unknown external validity
due to the practical limitations in replicating the studies
in different contexts. The approach adopted in most of
the research studies are basically the replication of the
studies in almost only open source environments. As state

previously, this approach is not enough to guarantee the
applicability in corporate settings.

• Almost no industrial impact: due to the lack of external
validity of the studies, the application of the developed
approaches to industrial settings is almost inexistent.
Therefore, there are no industrial-quality tools and models
that can be actually used in real development settings. At
present, almost of the research effort in this area has not
found a real impact on the software industry.

We acknowledge all the limitations listed above and we aim
at developing tools and approaches that are easily adaptable
in different contexts. The availability of customizable tools
is a starting point for improving the development of reusable
models in the area of bugs analysis and prediction. To do that,
we have started developing a data extraction framework that
is plug-in based and designed to be extensible. The main data
sources we consider are (Figure 1): a) version control systems;
b) issue tracking systems. The data are then stored locally to
speed-up the analysis through different statistical and machine
learning algorithms that are under investigation.

Fig. 1. Overview of the data extraction and analysis architecture.

Using the above outlined system, we have started to in-
vestigate a specific subset of bugs: the ones related to the
concurrency aspects of the code.

Concurrency bugs are hard to detect (being a specific case
of the heisenbugs class [4]) and fixing them is usually more



expensive than other classes of errors. In the last few years
several approaches have been developed to limit the impact
of concurrency-related bugs, all with limited success. Many
authors agree that solutions integrating different approaches
are probably the most promising [30]. But all solutions,
whether based on prediction [37], static code analysis [7]
[11] [1] [34] [22], dynamic code analysis [6] [13] [21] [10],
manual characterization [8] [18] or pattern matching [17] need
erroneous code to train their models, refine their patterns
and improve their taxonomies. Generally speaking we can
say that improving our knowledge on what goes wrong with
concurrency management can lead to better code (“know your
enemy” as per Sun Tzu in The Art of War).

However, concurrency bugs are (relatively) rare. We per-
formed an analysis on the Apache HTTPD project 1 to assess
the frequency of these bugs with respect to all other categories.
Starting from 3,052 linked bugs [2] (i.e., bugs for which a
reported issue can be liked to a code revision fixing it, more
details on the procedure we used can be found later in the
paper) we sampled 385 of them and checked manually whether
they were concurrency-related. The result of this analysis
shows that 4.16% of all reported bugs are expected to be
concurrency-related with a 95% confidence interval and 5%
error margin.

We also used the HTTPD code base to assess the effort
needed to solve these bugs. Several different metrics can be
used to characterize the effort, we focused our analysis on
two parameters that can be extracted with software repositories
mining techniques:

1) Number of people involved in its definition and fixing
(counted as number of people participating in the dis-
cussion of the bug in the bug tracking system).

2) Number of comments per bug in the bug tracking
system.

We extracted these values from a sample composed by
103 concurrency-related and 821 non concurrency-related bugs
(the classification has been performed manually). The results
we obtained are summarized in Table I.

TABLE I
SOME PROCESS METRICS FOR CONCURRENCY-RELATED AND NON

CONCURRENCY-RELATED BUGS.

Average persons Average comments
Concurrency 4.77 11.08

Non-concurrency 3.76 6.78

On average concurrency bugs involve 4.77 persons while
other bugs involve 3.76 persons; 11.08 comments on average
appear on the bug tracking system for concurrency-related
bugs while 6.78 comments appear for other bugs.

This is just a very basic analysis that does not provide a
comprehensive overview of the characterization of the con-
currency and non concurrency related bugs but it is useful to

1https://httpd.apache.org/

understand that the two kinds of bugs are deeply different from
several point of view.

Given this context a method that is able to reliably extract
code with concurrency-related problems can be a valuable
asset.

Existing methods based uniquely on (static) code analysis
are available and are known to be effective [14] but are
often limited to specific programming languages and tend to
identify only specific error patterns, so we decided to define
an approach based on software repositories mining.

We initially tried to identify such method by characterizing
a bug based on its description and the associated discussion in
the bug tracking system. By using pattern matching techniques
we selected 948 relevant issues. A manual check with a
sample of 543 of these issues (giving a 95% confidence
interval and 5% error margin) showed a very high recall
(97.09%) but a limited precision: 18.73%. A study of the false
positives showed what words such as “lock”, “concurrent”,
and “atomic” are often used to refer to aspects of the devel-
opment process rather than to aspects of the code to be fixed.
While more sophisticated text analysis methods can probably
improve this approach, it was quite obvious that high precision
was out of reach, this led to the decision to design an approach
based on both issue reports and code analysis.

IV. OUR APPROACH

Our approach is based on an analysis that take advantage of
information coming from two different sources: code analysis
and issue reports. Code analysis is used to identify concurrent
code based on the primitives used inside the code that are
concurrency-related. Issue reports are used to identity erro-
neous code from the description of the issue in the issue
tracking system.

We follow the intuition that the modification to the code that
leads to closing an issue as fixed is a bug fix. This implies then
the version of the code before this modification contains a bug.
To take advantage of that, we need to tie together issue reports
and code revisions. This is a problem that has been originally
posed by [2] and is subject of some more recent research work
[35] as discussed in Section II.

We operated in a similar way finding links from issue re-
ports (specifically, from the discussion associated to the report)
to revisions and from commit comments to bug reports. As
an example, consider the following excerpt of an issue report
taken from the Bugzilla2 bug tracking system as deployed for
the Apache HTTP Server project3:

2http://www.bugzilla.org
3https://bz.apache.org/bugzilla/



Bug 43359:
trunk EventMPM’s graceful restart/stop are not graceful
Description:
I tested rev 574843 Event MPM.
While downloading a file, a graceful restart/stop kill a
connection immediately.
I tested rev 327944 (before async write was merged) too,
and no problem.
Discussion:
...
Comment 12:
Committed in r1137182, thanks for the patch

Since bug 43359 is marked as closed, we can assume that
revision 1137182 contains a bug fix. Therefore, the previous
revision contains a bug.

Now consider the following revision commit taken from the
SVN4 version control system as deployed for the very same
Apache HTTP Server project 5:

Revision 574462
Don’t call into get worker while holding the timeout list
mutex.
PR: 42031

From this text we can infer that revision 574462 has been
created to fix issue 42031, so we can assume that the previous
revision contained erroneous code (which is obviously not
the case for all revisions, since some of them are created to
introduce new features or to modify existing, logically correct,
ones).

Notice that, while developers should keep track of the links
between issues and revisions, several links are missing: many
issues are closed with no indication of the revision in which
the fix is introduced and many commit logs do not contain
references to the issue they fix. This implies not only that
many existing links cannot be retrieved but also that several
of the retrieved one are unidirectional (i.e., we either have an
issue referencing a revision or a revision referencing an issue
but we do not have both); it should also be considered that a
revision can fix several bugs and that the same bugs can be
fixed in several revisions (even if this last case is relatively
rare).

Moreover, the format used to refer to issue or revisions is
not standardize and usually changes between developers and
may have very different styles such as:

• “fix for bug 12345”
• “PR12345”
• “PR: 12345”
• “closes issue 12345”
• “fixed in 54321”
• “fixes I54321”
• etc.

4https://subversion.apache.org/
5https://svn.apache.org/

This last problem can be faced using some text analysis
heuristics, existing literature presents approaches based on
relatively simple pattern matching [32] or to more advanced
multi-layer techniques adopting machine learning [24] as
described in Section II.

Since our aim is to develop a method with a high precision,
we decided to adopt a strategy based on pattern matching that
is known to achieve high precision while sacrificing a bit of
recall [32].

We tested our approach on the HTTP Server and Portable
Runtime (APR) Apache projects. By analyzing 35,087 issues
(having status “fixed”) and 51,995 revisions from 2002 to
2015, we have been able to find 4,491 links between the two
groups (this figure is consistent with those found in literature).

We then retrieved the code that was changed for all the
revisions and analyzed it to infer if it was related to concur-
rency management. We also factored out of our analysis links
associated to large code changes because we realized that this
was usually a wrong categorization of the related issue. Even
if these cases are described as bug reports, they are actually a
new feature request, therefore out of the scope of our analysis.

To perform this analysis we adopted a pragmatic approach:
to manage concurrency, the project considered uses a set of
functions defined in APR, we marked as concurrency-related
all code containing calls to these functions. This resulted in a
set of 15 code changes, and thus to 15 code fragments (those
changed by the revision) potentially containing concurrency-
related bugs. A manual verification of this code fragments
showed that this was indeed the case for 13 of them, leading
to an overall precision for our method of 87%.

While we did not perform an exhaustive analysis to access
the recall for the method (that, for the aforementioned consid-
erations, is not as important as precision in our scope) we can
observe that, as previously shown in our analysis of a sample
of the issues database, we should expect 4.16% (with a 95%
confidence interval and 5% error margin) of the issues to be
related to concurrency problems. Given that we applied our
method to a population of 35,087 issues and identified 15 of
them as concurrency related we can expect its recall to be
about 1/10th.

V. DISCUSSION

Our method is able to extract concurrency bugs in large
codebases with a high level of precision. However, given the
peculiar characteristics of concurrent code, high precision and
high recall are probably not achievable in this context.

This is a first attempt, several aspects of the proposed
approach can be improved: linking algorithm, code analysis,
etc. The fact that we obtained promising results by using a
simple approach confirms that we are heading in the right
direction.

VI. THREATS TO VALIDITY

The design and the execution of this study have have been
performed under several assumptions and there are several



limitations that can limit the validity of the study and the re-
lated analysis. In particular, we need to consider the following
aspects:

• This is a preliminary study only based on the Apache
HTTP Server. Even if we already have investigated some
other projects to cross-check the validity of the analysis
performed, the investigation of such additional data sets
is not complete and could not be reported in this study.
In any case, different project may present different prop-
erties of the concurrency bugs.

• We are dealing with small numbers so the statistical
significance of some of our analyses can be limited

• There could be some mistakes in the manual identification
of the concurrency bugs. However, to mitigate the risk,
the manual check was performed by at least two people
independently.

• Having to deal with a small number of instances and
small recall figures (which implies several potential false
negatives) can result in a bias that could effect classi-
fication algorithms as discussed in [16]. Further study
in needed to determine is this problem can effect also
our specific domain. Moreover: analytic and pattern de-
tection approaches to characterize concurrent bugs are
not exposed to the same problems of machine learning
approaches.

• The software analyzer we have developed may also
include some bugs that prevent the identification of some
relevant bugs.

VII. CONCLUSIONS AND FUTURE WORK

The paper has presented a first analysis of the char-
acterization of concurrency-related bugs compared to non
concurrency-related ones. There are several aspects of the
developed approach that can be improved but the first set of
results are already useful for the implementation of a basic
analysis tool. Such tool is based on a plug-in architecture
that can be easily extended to support different issue tracking
systems and different version control systems. The analysis
phase can also be automated and customized but it requires
more investigation to completely automate the process.

Future work will include the integration of the source code
analysis with the analysis of the linked issues to improve
the level of reliability of the proposed approach, especially
the recall. Moreover, a more advance analysis of the source
code will be implemented using the code metrics proposed in
[5]. Finally, based on such description models, a prediction
model able to help developers in the identification of not
already detected bugs will be developed. From the point of
view of the supporting tools, additional plug-ins to support
different systems will be developed. Finally, the analysis will
be automated as well.

ACKNOWLEDGMENT

The research presented in this paper has been partially
funded by the ARTEMIS project EMC2 (621429).

REFERENCES

[1] C. Artho, K. Havelund, K., “Applying Jlint to space exploration soft-
ware.”, Verification, Model Checking, and Abstract Interpretation (pp.
297-308). Springer Berlin Heidelberg, 2004.

[2] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein, “The miss-
ing links: bugs and bug-fix commits.” 18th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), 2010.

[3] C. Boyapati, R. Lee, M. Rinard, “Ownership types for safe programming:
Preventing data races and deadlocks”, 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA ’02), 2002.

[4] G. Carrozza, D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, “Anal-
ysis and Prediction of Mandelbugs in an Industrial Software System”,
IEEE 6th International Conference on Software Testing, Verification and
Validation (ICST 2013), 2013.

[5] P. Ciancarini, F. Poggi, D. Rossi, A. Sillitti, “Improving bug predictions
in multi-core cyber-physical systems”, 4th International Conference on
Software Engineering for Defense Applications (SEDA 2015), Rome,
Italy, 26 -. 27 May 2015.

[6] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, S. Ur, “Multithreaded Java
program test generation.”, IBM systems journal, 41(1), 2002.

[7] D. Engler, K. Ashcraft, “RacerX: effective, static detection of race
conditions and deadlocks”, 19th ACM symposium on Operating systems
principles (SOSP ’03), 2003.

[8] E. Farchi, Y. Nir, S. Ur, “Concurrent bug patterns and how to test them”,
Parallel and Distributed Processing Symposium, 2003.

[9] C. Flanagan, S. N. Freund, “Atomizer: a dynamic atomicity checker for
multithreaded programs”, 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’04), 2004.

[10] K. Havelund, T. Pressburger, “Model checking java programs using
java pathfinder.”, International Journal on Software Tools for Technology
Transfer, 2(4), 2000.

[11] D. Hovemeyer, W. Pugh, “Finding bugs is easy.”, ACM Sigplan Notices,
2004.

[12] A. Jermakovics, A. Sillitti, G. Succi, “Mining and Visualizing Developer
Networks from Version Control Systems”, 4th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE 2011)
at ICSE 2011, Honolulu, HI, USA, 21 May 2011.

[13] P. Joshi, M. Naik, C.S. Park, K. Sen, “CalFuzzer: An extensible
active testing framework for concurrent programs.”, Computer Aided
Verification ,Springer Berlin Heidelberg, 2009.

[14] D. Kester, M. Mwebesa, J.S. Bradbury, “How Good is Static Analysis at
Finding Concurrency Bugs?,”, 10th IEEE Working Conference on Source
Code Analysis and Manipulation (SCAM), 2010.

[15] S. Kim, T. Zimmermann, E. J. Whitehead, A. Zeller, “Predicting
Faults from Cached History”, 29th international conference on Software
Engineering (ICSE ’07), 2007

[16] S. Kim, H. Zhang, R. Wu, L. Gong, “Dealing with noise in defect pre-
diction”, 33rd International Conference on Software Engineering (ICSE),
2011

[17] D. Lo, H. Cheng, J. Han, S.C. Khoo, C. Sun, C., “Classification of
software behaviors for failure detection: a discriminative pattern mining
approach.”, 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009.

[18] S. Lu, S. Park, E. Seo, Y. Zhou, “Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics”, ACM Sigplan
Notices, vol. 43, pp. 329–339, 2008.

[19] A. H. Moin, M. Khansari, “Bug Localization Using Revision Log
Analysis and Open Bug Repository Text Categorization”, 6th International
IFIP WG 2.13 Conference on Open Source Systems, OSS 2010, Notre
Dame, IN, USA, May 30 – June 2, 2010.

[20] R. Moser, W. Pedrycz, A. Sillitti, G. Succi, “A model to identify
refactoring effort during maintenance by mining source code reposito-
ries”, 9th International Conference on Product Focused Software Process
Improvement (PROFES 2008), Frascati (Rome), Italy, 23 - 25 June 2008.

[21] M. Musuvathi, M., “Systematic concurrency testing using CHESS.”,
Proceedings of the 6th workshop on Parallel and distributed systems:
testing, analysis, and debugging, 2008.

[22] M. Naik, C.S. Park, K. Sen, D. Gay, “Effective static deadlock detec-
tion.”, 31st International Conference on Software Engineering, 2009.

[23] R. H. B. Netzer, B. P. Miller, “Improving the accuracy of data race
detection”, 3rd ACM SIGPLAN symposium on Principles and practice
of parallel programming (PPOPP ’91), 1991.



[24] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes.”,
20th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE), 2012.

[25] T. J. Ostrand, E. J. Weyuker, R. M. Bell, “Predicting the location
and number of faults in large software systems”, IEEE Transactions on
Software Engineering, Vol. 31, No.4, pp. 340 – 355, April 2005.

[26] W. F. Pan, B. Li, Y. T. Ma, Y. Y. Qin, X. Y. Zhou, “Measuring structural
quality of object-oriented softwares via bug propagation analysis on
weighted software networks”, Journal of Computer Science and Tech-
nology, vol. 25, no. 6, pp. 1202–1213, 2010.

[27] S. Rao, A. Kak, “Retrieval from software libraries for bug localization:
a comparative study of generic and composite text models”, 8th Working
Conference on Mining Software Repositories (MSR ’11), 2011.

[28] T. Remencius, A. Sillitti, G. Succi, “Assessment of software developed
by a third-party: A case study and comparison”, Information Sciences,
Elsevier, Vol. 328, pp. 237 – 249, January 2016.

[29] B. A. Romo, A. Capiluppi, T. Hall, “Filling the Gaps of Development
Logs and Bug Issue Data”, The International Symposium on Open
Collaboration (OpenSym ’14), 2014.

[30] B. A. Romo, A. Capiluppi, “Towards an automation of the traceability
of bugs from development logs: a study based on open source software”,
19th International Conference on Evaluation and Assessment in Software
Engineering (EASE ’15), 2015.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson, “Eraser:
A dynamic data race detector for multithreaded programs”, ACM Trans-
actions on Computer Systems, 15(4), 1997.

[32] J. Sliwerski, T. Zimmermann, A. Zeller, “When do changes induce
fixes?”, ACM SIGSOFT Software Engineering Notes (Vol. 30, No. 4,
pp. 1-5). 2005

[33] L. Voineaand, A.Telea, “How do changes in buggy Mozilla files prop-
agate?”, ACM symposium on Software visualization, 2006.

[34] J.W. Voung, R. Jhala, S. Lerner, “RELAY: static race detection on
millions of lines of code.”, 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007.

[35] R. Wu, H. Zhang, S. Kim, S.C. Cheung, “ReLink: Recovering Links
between Bugs and Changes”, 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering
(ESEC/FSE ’11), 2011.

[36] Y. Yu, T. Rodeheffer, W. Chen, “RaceTrack: efficient detection of
data race conditions via adaptive tracking”, 20th ACM symposium on
Operating systems principles (SOSP ’05), 2005.

[37] B. Zhou, I. Neamtiu, R. Gupta, “Predicting concurrency bugs: how
many, what kind and where are they?”, 19th International Conference on
Evaluation and Assessment in Software Engineering (EASE ’15), 2015.


