
Deterministic Parallel Programming for Railway
Applications

Oscar Medina Duarte
Thales Austria GmbH

Handelskai 92, 1200 Vienna, Austria
Email: oscar.medina@thalesgroup.com

Peter Tummeltshammer
Thales Austria GmbH

Handelskai 92, 1200 Vienna, Austria
Email: peter.tummeltshammer@thalesgroup.com

Abstract—Transport Automation systems rely on stringent
reliability and availability specifications which are met by im-
plementing replication techniques. At the same time, the micro-
processor market is transitioning to multi-core technology which
comes with the promise of increased computing performance,
energy efficiency and alike. Parallel programming is a common
technique used to exploit the new capabilities; however, this is also
associated with non-determinism. Determinism is a requirement
for replication of synchronous systems, which is why parallel
programming is still a challenge for safety-critical applications.

This paper presents an architectural description of a well-
established railway-control platform subject to dependability
certifications, its programming restrictions, and some of the
aspects associated with the introduction of parallel programming
into that environment. A formal semantics framework of parallel
programs is extended to show how the guarantees provided
by Deterministic MultiThreading (DMT) techniques apply to
replica determinism. Finally, the paper presents an outlook on the
applicability of DMT techniques in railway domain applications.

Keywords—Replica determinism, Railway Safety, Parallel Pro-
gramming, Fault tolerance

I. INTRODUCTION

Transport Automation (TA) systems share several architec-
tural characteristics derived from the fact that they are subject
to certifications with respect to their functional requirements
and their dependability1. Software replication is a common
technique used in TA systems in order to achieve the levels
of dependability required by the normative applicable to a
specific industry (e.g., CENELEC in the railway control indus-
try). Replicating a system function requires that each replica
exhibits the same observable output at a given time for the
same input [2]; this is referred to as replica determinism [2].
This assumption is straight forward in the sequential program-
ming model where there only exists one possible sequence
of instructions and memory accesses (for the same input).
Parallel programming on the other hand, does not necessarily
provide any guarantees with respect to the order in which
the instructions of a program are executed [3]. Determinis-
tic MutliThreading (DMT) is a class of parallel programs
which solve the non-determinism inherent to mutlithreaded
parallel programming by applying memory access scheduling
techniques [4], [5], [6]. This paper reviews the implications
of introducing parallel programming into a well-established

1Dependability is defined as the “ability to avoid service failures that are
more frequent and more severe than acceptable” [1].

Transport Automation Service Platform (TAS Platform) [7],
[8] and discusses the suitability of DMT techniques for this
purpose.

Aspects relevant to the certification, architecture and pro-
gramming interface of a safety-critical TA platform in the
railway domain are revealed in Section II. Further, Section III
provides a discussion about the determinism of parallel pro-
grams, and the potential of DMT in replicated software sys-
tems. Section IV gives an insight on the prospects of parallel
technology in the railway industry. Section V concludes by
arguing in favour of the application of DMT in safety-critical
applications.

II. RAILWAY-CONTROL PLATFORM

The TAS Platform is a well-established base technology for
safety-critical railway applications such as electronic railway
interlocking, axle counters and automatic train control systems
(e.g., the European Train Control System or ETCS) among
others [7], [8]. The main goal of this platform is to provide
a generic safety middleware with fault-tolerant and real-time
capabilities that supports the fulfilment of the overall RAMS
requirements (described Section II-A), while maintaining a
strict separation between the safety related functions and
the rest of the system. Figure 1 presents the layered design
approach of the TAS Platform. It can be observed that the
Safety-critical applications are constructed on top of a safety
middleware, which isolates safety-related characteristics of
the platform like replica-determinate communication, fault
detection, application recovery, re-integration and restriction
of un-safe calls to the operating system.

This separation has the benefit of masking away the details
of replication, real-time and safety-related features towards
the software developer. The application programming interface
(described in Section II-C) is based on the POISX standard,
which is familiar to UNIX/Linux/C/C++ programmers and it
also improves portability.

A. Dependability requirements in railway automation

Depending on the country and region of operation, rail-
way control software must comply with a variety of local
and international standards. In the case of Europe, railway
control systems are subject to certification according to the
CENELEC standards. The European Norm 50126 [9] specifies

Safety Critical Application(s)

Safety Middleware

POSIX

Operating System, Drivers, etc..

Restricted OS interface
for safety-critical

applications

Communication Layer

Fault-Detection

Message Voting

Recovery

Fig. 1. Layered architecture of the TAS Platform [8]: Safety-critical appli-
cations gain access to system resources through a middleware layer, which
transparently provides the services required to operate within the restrictions
of a safety case for the application.

the basic Reliability, Availability, Maintainability, and Safety
(RAMS) requirements applicable to railway control systems,
the EN 50128 [10] and EN 50129 [11] standards specify the
requirements for the development of software and electronic
devices in the railway control domain. During the risk anal-
ysis2 phase of a system life-cycle, the hazards of a system
are identified and analysed, resulting in tolerable hazard rates
(THR) for each hazard [11]. For those systems whose failure
may result in significant human, economic or environmental
damage, the THR is that of SIL4 [13] which is equivalent to a
maximum of 10−8 dangerous failures per hour (i.e., less than
a single dangerous failure every 11, 415 years).

Applications in the railway domain differ from applications
in other domains (e.g., avionics) by the fact that in several
scenarios, it is possible to safely stop the delivery of a service
in the event of a detected anomaly [13]. For example, an axle
counter application monitors the occupancy of a railway track
section in order to maintain a safe distance between trains [14].
If a segment is occupied, other trains are not allowed to
enter or to cross that section. To ensure safety, the equipment
must continually monitor its own condition during operation
(health monitoring). When a fault is detected, the system will
be switched into a defined safe state (safety reaction), which
in this case would mean to indicate that the track section is
occupied, and that the system is in a faulty state [14], [15].
This is an example of a safety reaction that ensures a safe
operation but degrades the availability of the infrastructure (by
not allowing trains to traverse the faulty section).

A system that is able to deliver “continuous operation in the
presence of faults,” [1] is known as a fault-tolerant system [1].
Fault-tolerant systems compare the various outputs of the
replicated functions: If all outputs are the same, the system
is considered to be fault-free. Replication is used not only to
detect faults, but like in the case of Triple Modular Redun-
dancy (TMR), it is also used to achieve higher availability
through recovery and re-integration of failed nodes [13].

2The IEC/EN 61508 international standard uses a formulation of risk
assessment on the basis of the average probability of failure per hour [12]
and defines four Safety Integrity Levels (SIL1 to SIL4) that are used as a
classification for the tolerated failure rates of safety-critical components.

An important aspect of the correctness of a TA system is
the timeliness of its behaviour. Each computation and each
reaction has to be performed within a defined time interval or
deadline. The term real-time is used to denote these types of
systems. A real-time computer system is defined as “a com-
puter system in which the correctness of the system behaviour
depends not only on the logical results of the computations, but
also on the physical time when these results are produced” [2].
As a consequence, time behaviour is supervised by the system
in order to make sure that it is compliant with the requirements
established during the design phase of the application and
ensure a prompt reaction when faults are detected [13].

Our research aims for the introduction of parallel program-
ming models into an existing TA platform that provides a fully
transparent replication layer to the software applications. In
the following sections we explain some of the requirements
for transparency in replication and give examples where con-
current programming falls short at complying with them.

B. Replication

Replication is the association of N independent modules
with identical functionality. The TAS Platform is built upon
the K-out-of-N replication architecture. A system formed by
N modules is said to be K-out-of-N redundant if the system
is able to be operational if and only if at least K out of its N
replicas are non-faulty [16], [17]. The assumption is that when
each of the non-faulty modules receives the same input, each
of the non-faulty modules shall produce the same output. In
order to verify this, the replicas exchange messages through a
redundant network (as depicted in Figure 2) containing their
respective computed values. A consistency criterion or voting-
function is applied in order to detect faults and to reach an
agreement between the different replicas (see Figure 3). The
assumption also requires that the modules are synchronized
because the input for each of the voted messages shall corre-
spond to the same computation, that is, the messages shall be
consumed in an order consistent to all of the replicas.

M2

M1 M3

Fig. 2. Triple Modular Redundancy communication: The modules exchange
messages with each other in order to detect errors, maintain a global time
and reach a consistent agreement of states among the replicated modules
(i.e., interactive consistency [18]).

The middleware layer of the TAS Platform provides trans-
parent access to the required synchronization, communication,
fault detection (voting) and health-monitoring services that the
applications need in order to support the following K-out-of-
N redundancy configurations [8]:
1-out-of-1 or non-redundant configuration. In this configura-

tion, health monitoring and software diversity are com-

mon measures provided by the TAS Platform in order to
ensure safety [13].

2-out-of-2 configuration. The voting function in this configu-
ration has the capability to detect that a fault has occurred,
that is, if the two messages are not identical, then a safety
reaction is activated. This mode of redundancy allows for
an application to implement a safe failure mode like fail-
stop [19]: Upon the detection of a failure, all replicas stop
communicating.

2-out-of-3 configuration, also referred to as Triple Modular
Redundancy (TMR). The voting function in this configu-
ration, has the ability to mask a single failure, determine
the faulty module and continue to operate without service
interruption (see Figure 3). This redundancy configuration
is aimed at increasing the availability of a system.

V1

V2

V3

M1

M2

M3

Input

Output 1

Output 2

Output 3

Fig. 3. TMR System with distributed voters: A distributed majority voting
function is used in order to unify the states of the different processors [18] [20]
and produce a single correct output (a comprehensive survey of different
voting algorithms can be found in [21]).

A voting mechanism in a real-time system requires not
only consistent information but also timely information. S.
Poledna [22] provides a definition of replica determinism to
describe the behaviour of non-faulty replicas as “a correspon-
dence of server outputs and/or service state changes under the
assumption that all servers within a group are starting at the
same initial state, executing the same service requests within
a given time interval”.

C. TAS Platform Programming Model
The programming model of the TAS Platform aims at

allowing an application developer to write software with main
focus on the functional aspects of the program. That is to
say that those aspects related to replication, synchronization,
communication, fault detection and recovery are mostly trans-
parent from the programmers’ point of view. In this context,
transparency refers to the separation between an application
(functional part) and the services provided by the middleware
(non-functional part).

Using the TAS Platform programming model, allows the
middleware to be configurable with respect to the hardware
redundancy architecture without having the need to modify the
source code of an application. For example, it is possible to
configure a system to use any of the redundancy configurations
described in Section II-B without modifying the application.
The programming model is accompanied by a set of program-
ming restrictions with the purpose of ensuring that the require-
ments and assumptions of the underlying platform with respect

to safety (Safety Case) and replication (replica determinism)
are not violated. The strict separation between the functionality
of an application and safety related services has the benefits
of reducing the certification efforts and improving the overall
safety of an application.

In order to satisfy the time requirements and to guarantee
replica determinism, the middleware of the TAS Platform
provides a scheduled parallel tasking model. In this model,
tasks belong to a set of tasks (group) and can communicate
locally with other tasks within their group. The tasks are
scheduled by a distributed, replica deterministic algorithm that
selects only one task from a task group to be runnable at
a time. In order to ensure replica determinism, the applica-
tion shall be restrained from using asynchronous functions
(e.g., signal()), blocking functions (e.g., wait()), non-
deterministic functions (e.g., rand()) or any other functions
that are not replica deterministic (e.g., gettimeofday()) in-
cluding the dynamic creation and destruction of threads within
the control flow of a task. Tasks that want to communicate
with tasks belonging to other groups, have to do it through the
communication and synchronization layer of the middleware,
which implies that the data is globalized and voted over all
hardware replica. This tasking model provides coordination
between concurrent tasks to ensure replica determinism, how-
ever, traditional parallel programming languages and models
cannot be transparently introduced without affecting the safety
assumptions, programming restrictions and generally the sup-
port from the middleware. In the following section, we will
elaborate on the implications of parallel programming with
respect to determinism.

III. DETERMINISM OF PARALLEL PROGRAMS

Sequential programming is well understood and proper
techniques and programming models exist that will guarantee
consistency and repeatability of computations even under
multi-programmed environments (e.g., running under a multi-
process operating system). Also in the safety-critical domain,
these types of programs have been widely used and their
verification strategies are well-established in the industry,
mainly by means of testing.

Parallel Programming on the other hand, relies on the notion
of concurrency which refers to the fact that the order in
which the instructions of simultaneously executing threads
is not predetermined by the program [3], but instead, by
the underlying scheduler. Dynamic scheduling decisions may
result in temporal instruction interleavings that lead to un-
wanted behaviours. It is difficult for a developer to predict all
possible ways in which her code could be executed by the
computer [23].

A. Sources of Non-Determinism

Sources of replica non-determinism can appear at every
layer of an architecture, for example, still under the assumption
that a replicated group uses exactly the same type of hard-
ware, slight variations of clock speed may occur, resulting
in the various internal clocks to drift apart and possibly

causing inconsistent ordering of the messages or timeouts.
At the operating system level, processing of asynchronous
events under a (preemptive) dynamic scheduler, may cause
different execution sequences (interleavings) of operations
that can result in timeouts, inconsistent ordering of events,
and/or consistent comparison problems [24]. Specific to the
application layer, sources for replica non-determinism may
appear if the application uses local information or other not
globally available data sources, like random number gener-
ators; uncoordinated local clocks; non-deterministic program
constructs or any combination of these [22].

Consider an application code like the one in Example 1.
Example 1. Parallel implementation of the dot prod-
uct 3 between two vectors A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}. The dot product is defined as
A·B =

∑n
i=1 aibi. A natural way to express this problem

in OpenMP would be:
...

float result = 0.0f;
#pragma omp parallel for reduction(+:result)

for (size_t i = 0; i < n; i++){
result += a[i] * b[i];

}
...

OpenMP will generate a private copy of the reduction
variable (i.e., result) on each of the spawned tasks,
and will assign regions of the input vectors to each task.
The original copy of result is then updated with the
values of the private copies using the specified associative
and commutative operator.

Although not immediately evident, the code in Example 1 is
not replica deterministic, due to the fact that in OpenMP, the
order in which the values are aggregated is unspecified [26].

Finite-precision arithmetic operators are approximately as-
sociative [24], comparing such results in a distributed voter
like the one in Figure 3, leads to a consistent comparison
problem, which arises whenever a compared quantity is the
result of inexact arithmetic [24]. A sequential version of the
previous example is replica deterministic, because the order
of the computations is always the same, however, its parallel
implementation is not replica deterministic since we cannot
predict the order in which each of the replicas will apply the
reduction operation to the intermediate results.

B. Scheduling of Parallel Programs

This section shows how replica determinism relates to
parallel programs by discussing the semantics of instruction
interleavings. As we have seen in Example 1, the variability
of the order in which the instructions of the threads are
executed, may produce different results for the same program
with the same input. The parallel semantics of a program
can be defined as the set of all possible executions under a
given architecture [27]. A program P is defined as an ordered
set of communication (i.e., access to shared memory) and
synchronization (i.e., locks, barriers, etc. . .) instructions. This

3We reproduce a typical OpenMP programming example from [25] in order
to illustrate a source of the consistent comparison problem [24] in the context
of parallel programming.

paper uses a notion of schedule as the ordered sequence of
executed communication and synchronization instructions of a
program. For intuition, the order of the executed instructions,
is the order as observed by the memory. This definition is
inspired by the formal definition of an execution in [27],
with the difference that we also consider the duration of each
instruction in the model.

Two schedules are considered to be singleton equivalent if
their outputs are the same, for the same input and the order
of their instructions is the same [27]. Singleton equivalence
is sufficient but not necessary to ensure replica determinism.
Replica determinism can be ensured as long as the sequence of
inputs and outputs observed within a time interval is the same
for a given voting mechanism. Let the ordered sequence of
instructions I = (i0, i1, . . . , in) be a schedule where every in-
struction ik ∈ I is atomic and every pair of distinct instructions
holds a happens-before relationship with respect to the mem-
ory access. Individual instructions are described by a 4-tuple
consisting of an instruction mnemonic (OP), a set of param-
eters (val∗), duration of the instruction execution according
to a given clock (len) and an identifier to the thread (TID)
that executes the instruction4 e.g., ih = (OP, val∗, len, T ID).
Instructions can be synchronization operations (i.e., they do
not directly interact with memory but they have an effect
on the order of the program e.g., lock/unlock operations) or
memory access operations (i.e., operations which directly read
or write memory) [28].

Let sched(P) be the set of all singleton schedules of a
program P for a given input.

sched(P) =
⋃
∀I∈P

{I} (1)

Note that the cardinality |sched(P)| is asymptotically expo-
nential to the number of threads in P [5]. If P is a sequential
program then |sched(P)| = 1 (i.e., one single schedule). If P
is a concurrent program then |sched(P)| ≥ 1.

A multithreaded program that has one single schedule
(|sched(P)| = 1), is defined as a Deterministic MultiThreaded
(DMT) program [4]. If a program P is the result of concatenat-
ing a series of independent tasks τr in a sequence, the number
of schedules |sched(P)| is equal to the product of the number
of schedules of its composing tasks as described in (2).

|sched(P)| =
n∏

r=0

|sched(τr)| (2)

For example, the TAS Platform allows task groups to
execute concurrently with respect to each other. Tasks within
the same group of tasks are scheduled in a sequential (and
deterministic) order. In accordance to (2), as long as each task
in the schedule is deterministic (regardless of the number of
threads involved per task), the overall schedule will also be
deterministic.

4A similar definition is given in [27] which does not consider the duration
of a given instruction

J. Yang et al. [5] make the observation that many programs
rely on a larger number of schedules to efficiently solve a prob-
lem and this does not necessarily sacrifice correctness. Stable
MultiThreading (StableMT) [5] is a class of multithreaded
programs in which the number of schedules is reduced by
allowing some parts of the code to be non-deterministic (in the
singleton sense) with the purpose of enhancing performance.
StableMT does not necessarily contradict replica determinism.

Two schedules I1 and I2 are said to be replica-deterministic
equivalent if and only if there is a one-to-one mapping be-
tween their inputs and outputs (i.e., dataflow equivalent [27])
and its dataflow is observed by a voting mechanism within
the same time interval. Replica-deterministic equivalence is
necessary in order to construct replicated parallel applications.

We can envision a parallel Fork-Join computational model
based on DMT or stability to be suitable for the TAS Platform
because the execution time of tasks is bounded and the
execution policy of task groups provides a similar structure.

Parallel languages like OpenMP [26], Cilk [29] and
CilkPlus [30] provide an easy access to the fork-join computa-
tion model in C but they are limited at providing determinism
by default [31]. DMT and StableMT approaches can help to
solve the problem of non replica determinism in distributed
replicated applications.

C. Making parallel programs deterministic

We have seen in Section III-A that program behaviour
can be non-deterministic depending on how the instructions
interleave. As described in Section III-B, DMT is a property
of multithreaded programs which guarantees that threads’ ac-
cesses to shared memory are interleaved in deterministic order
repeatable from execution-to-execution of the same program
with the same input [4], which provides a determinism equiv-
alent to that of sequential programs [4]. Olszewski et al. [4]
defines two styles of determinism in multithreaded programs:
strong determinism where the order in which instructions
access shared memory is deterministic and weak determinism
which ensures that lock acquisitions occur always in the same
order. Programs that are data-race free can be guaranteed to
be deterministic using weak determinism. [4], on the other
hand, programs with data-races can only be guaranteed to be
deterministic if strong determinism is used.

Kendo [4] is one of the first software only DMT imple-
mentations which uses a turn-based approach where each
thread in a program is only allowed to make shared memory
operations while in possession of a token. The turn to own
the token is passed from thread to thread in a deterministic
order based upon a deterministic logical clock constructed by
using a deterministic performance counter [4]. A turn can
only be possessed one thread at a time, and only threads
possessing the token are allowed to commit memory changes.
This technique, while deterministic, incurs high performance
costs because all the memory writing operations would be
effectively serialized [4]. Threads in load imbalanced programs
may have a long waiting time before they get a turn to

write [32]. Additionally, Kendo can only guarantee determin-
ism for data-race-free programs i.e., weak determinism [4]. In
order to provide strong determinism, systems like Grace [33]
or DThreads [6] execute threads in isolation. Each created
thread has its own memory space and memory writes are
committed into a local memory address. Memory commu-
nication occurs at global synchronisation points (i.e., thread
creation/termination, mutex lock/unlock, condition variables,
barriers and signals [6]) where a deterministic algorithm
merges the isolated modifications of each thread into a shared
memory. Parallelism is increased by reducing the effects of
load imbalance, however, the fact that all threads have to wait
at the same global barrier also wastes time that could otherwise
be used for computation.

RFDet [28] introduced a relaxed memory model called De-
terministic Lazy Release Consistency (DLRC) which relies on
the property that threads can only see a memory modification
from another thread ”if (and only if) the change was made
before the currently executing instruction” [28]. This system
also isolates the threads’ access to memory but it requires no
global barriers.

Consequence [34] also proposes a barrier-free DMT im-
plementation but it adopts a kernel-based version controlled
memory model [35]. Memory updates can only be seen by a
reading thread after a writing thread has commited its local
memory to the shared memory and the reading thread has
requested a memory update.

Parrot [32] is an implementation of StableMT. This is
built upon the principle of reducing the number of schedules,
instead of aiming at solving non-determinism in a concurrent
application, it focuses on giving the developer the ability to
enable and disable determinism within the code.

The above mentioned systems have the attractive quality that
their application programming interfaces are POSIX and can
be adopted by simply re-compiling and/or linking an existing
program with the respective DMT library. Despite the fact
that these systems are not production ready, they provide a
good basis for creating deterministic parallel programs in the
railway control domain.

IV. PARALLELISM IN RAILWAY APPLICATIONS

This section discusses the opportunities that parallel pro-
gramming brings at improving an already well-established
software platform. An outlook is given of the applicability
of DMT in a safety-and-replication middleware and a taxon-
omy of railway applications is described which uncovers the
aspects that make one application more or less suitable for
parallelization using DMT.

Many applications running in the field such as axle counters,
point controllers and signal controllers are strongly I/O driven,
which means the main source of delay stems from communica-
tion and not computation. These applications show little effect
to parallelisation attempts, as they are inherently serialised.

On the other hand, there are applications dealing with
computationally intensive tasks whose time granularity has
the potential to significantly improve the safety or the overall

experience of the users (the users can be railway operators,
technicians, passengers or other control systems).

One major driver application for this is future interlocking
based on the European Train Control System (ETCS [36],
[14]). ETCS is an automated train protection system with
particular focus on high speed trains, which was founded
by the European Union during the 1990s. The overall goal
is to technically harmonize the railway traffic throughout
Europe allowing trains to pass borders without having to deal
with incompatibilities between the countries. ETCS currently
supports three Levels [14]:

ETCS Level 1 works as an advanced intermittent automatic
train protection (ATP) system with on-board signalling and
can be used as an overlay system with existing signalling
systems. Train control information is transmitted by controlled
transponders, which get their information from the traditional
signalling system.

ETCS Level 2 works as a continuous ATP system in which
the train control data is transmitted by radio communication
(the current standard: GSM-R). Transponders are used as
reference points for the on-board train location system. From
the train location data a radio block centre (RBC) calculates
movement authorities and transmits them to the trains. Fixed
block sections and conventional track clear detection systems
still remain.

ETCS Level 3 finally introduces train-borne checking of
train integrity which eliminates the need for fixed block
sections for line clear detection. With the radio-based train
separation (see Figure 4), traditional fixed block sections can
be replaced by virtual or moving block.

Fig. 4. ETCS Level 3 schematic [37]

The dynamic spacing introduced in ETCS Level 3 will
largely increase the computational effort on interlocking, as
granting movement authority to a train then depends on
dynamic properties of the railway network such as train speed
and braking curves, environmental conditions and potentially
non-safety related properties such as time tables and power
consumption.

The fork-join programming model has been shown to be
analysable for real-time applications [38], [39], which makes
it a good match to parallelize calculations like the ones
mentioned above. Also, as briefly discussed in sections III-B
and III-C the fork-join model offers a model suitable for

usage in combination with DMT techniques. Technologies
like OpenMP [26] and Cilk [29]/CilkPlus [30], offer easy to
use interfaces which allow the creation of parallel programs
with reduced effort in comparison with the traditional pthreads
approach. Mapping existing computational problems in the
railway domain to DMT applications is still an open research
milestone.

V. SUMMARY AND FUTURE WORK

This paper presented an introduction to the requirements
of safety-critical software in the railway control industry. An
industrial example of a widely adopted automation platform
(TAS Platform) is given, highlighting architectural characteris-
tics related to transparency and replication. A “formal semantic
framework for deterministic parallel programming” [27] is
extended in order to show how replica determinism can be
achieved by controlling the number of possible schedules
in which a parallel application can be executed. It is also
discussed how the fork-join model of computation can be
achieved in the TAS Platform by making use of the guarantees
provided by DMT and StableMT techniques.

Our future work consists of conducting further experimenta-
tion with DMT and StableMT approaches in high availability
configurations. We will continue to focus on the reconciliation
between the properties of parallel programming and the re-
quirements of safety-critical applications in the railway control
domain with respect to transparency and replica determinism.

ACKNOWLEDGEMENTS

This work has been partially supported by the ARTEMIS
Joint Undertaking as a part of the EMC2 project under
grant agreement no. 621429 and by the Austrian Research
Promotion Agency (FFG) project no. 842568.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” in IEEE Transac-
tions on Dependable and Secure Computing, vol. 1, no. 1, Jan 2004, pp.
11–33.

[2] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed., ser. Real-Time Systems. Springer, 2011.

[3] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33–42, May 2006.

[4] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient de-
terministic multithreading in software,” in Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XIV. New York,
NY, USA: ACM, 2009, pp. 97–108.

[5] J. Yang, H. Cui, J. Wu, Y. Tang, and G. Hu, “Making parallel programs
reliable with stable multithreading,” Commun. ACM, vol. 57, no. 3, pp.
58–69, Mar. 2014.

[6] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: Efficient determin-
istic multithreading,” in Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. ACM, 2011.

[7] J. Mellado, M. Sierra, A. Romera, and J. Dueñas, “Railway-control
product families: The Alcatel TAS Platform experience,” in Software
Architectures for Product Families, ser. Lecture Notes in Computer
Science, F. van der Linden, Ed. Springer Berlin Heidelberg, 2000,
vol. 1951, pp. 53–62.

[8] A. Gerstinger, H. Kantz, and C. Scherrer, “TAS Control Platform: A
platform for safety-critical railway applications,” ERCIM News, 2008.

[9] Railway Applications: The specification and demonstration of Reliabil-
ity, Availability, Maintainability and Safety (RAMS), European Commit-
tee for Electrotechnical Standardization (CENELEC) Std. EN 50 126-
1:1999, 1999.

[10] Railway Applications: Software for Railway Control and Protection Sys-
tems, European Committee for Electrotechnical Standardization (CEN-
ELEC) Std. EN 50 128:2011, 2011.

[11] Railway Applications: Safety Related Electronic Systems for Signaling,
European Committee for Electrotechnical Standardization (CENELEC)
Std., 2002.

[12] International standard 61508 functional safety: safety related systems,
International Electrotechnical Commission Std. IEC/EN 61 508, 2005.

[13] H. Kantz, S. Resch, and C. Scherrer, “Communication in train control,”
in Industrial Communication Technology Handbook, Second Edition.
CRC Press, 2014, pp. 1–15.

[14] J. Pachl, Railway Operation and Control, 3rd ed. VTD Rail Publishing,
2015.

[15] J. Palmer, “The need for train detection,” in The 11th IET Professional
Development Course on Railway Signalling and Control Systems, June
2006, pp. 47–53.

[16] H. Pham, “On the optimal design of k-out-of-n:g subsystems,” Reliabil-
ity, IEEE Transactions on, vol. 41, no. 4, pp. 572–574, Dec 1992.

[17] ——, “On the estimation of reliability of k-out-of-n systems,” Inter-
national Journal of Systems Assurance Engineering and Management,
vol. 1, no. 1, pp. 32–35, 2010.

[18] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.

[19] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An
approach to designing fault-tolerant computing systems,” ACM Trans.
Comput. Syst., vol. 1, no. 3, pp. 222–238, Aug. 1983.

[20] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul.
1982.

[21] G. Latif-Shabgahi, J. Bass, and S. Bennett, “A taxonomy for software
voting algorithms used in safety-critical systems,” Reliability, IEEE
Transactions on, vol. 53, no. 3, pp. 319–328, Sept 2004.

[22] S. Poledna, “Replica determinism in distributed real-time systems: A
brief survey,” Real-Time Systems, vol. 6, no. 3, pp. 289–316, 1994.

[23] S. Adve, “Data races are evil with no exceptions: Technical perspective,”
in Communications of the ACM, vol. 53, no. 11. New York, NY, USA:
ACM, Nov. 2010, pp. 84–84.

[24] S. Brilliant, J. Knight, and N. Leveson, “The consistent comparison
problem in n-version software,” Software Engineering, IEEE Transac-
tions on, vol. 15, no. 11, pp. 1481–1485, Nov 1989.

[25] M. McCool, J. Reinders, and A. Robison, Structured Parallel Program-
ming: Patterns for Efficient Computation, 1st ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2012.

[26] Openmp. [Online]. Available: http://openmp.org
[27] L. Lu and M. L. Scott, “Toward a formal semantic framework for

deterministic parallel programming,” in Proceedings of the Distributed
Computing: 25th International Symposium (DISC 2011), D. Peleg, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 460–474.

[28] K. Lu, X. Zhou, T. Bergan, and X. Wang, “Efficient deterministic
multithreading without global barriers,” in ACM SIGPLAN Notices,
vol. 49, no. 8. ACM, 2014, pp. 287–300.

[29] C. E. Leiserson, “The cilk++ concurrency platform,” J. Supercomput.,
vol. 51, no. 3, pp. 244–257, Mar. 2010.

[30] Cilkplus. [Online]. Available: https://www.cilkplus.org/
[31] A. Aviram and B. Ford, “Deterministic openmp for race-free paral-

lelism.” in HotPar, 2011.
[32] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.

Gibson, and R. E. Bryant, “Parrot: A practical runtime for deterministic,
stable, and reliable threads,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP ’13. New York,
NY, USA: ACM, 2013, pp. 388–405.

[33] E. D. Berger, T. Yang, T. Liu, and G. Novark, “Grace: Safe multithreaded
programming for c/c++,” in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’09, vol. 44, no. 10. New York, NY, USA:
ACM, 2009, pp. 81–96.

[34] T. Merrifield, J. Devietti, and J. Eriksson, “High-performance determin-
ism with total store order consistency,” in Proceedings of the Tenth
European Conference on Computer Systems, ser. EuroSys ’15. New
York, NY, USA: ACM, 2015, pp. 31:1–31:13.

[35] T. Merrifield and J. Eriksson, “Conversion: Multi-version concurrency
control for main memory segments,” in Proceedings of the 8th ACM
European Conference on Computer Systems, ser. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 127–139.

[36] C. Directive, “96/48/ec of 23 july 1996 on the interoperability of the
trans-european high-speed rail system,” Official Journal L, vol. 235,
no. 17, p. 09, 1996.

[37] Wikipedia, “European train control system — wikipedia, the free
encyclopedia,” 2016, [Online; accessed 11-February-2016]. [Online].
Available: https://en.wikipedia.org/w/index.php?title=European Train
Control System&oldid=704210769

[38] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st, Nov 2010, pp. 259–268.

[39] C. Maia, L. Nogueira, and L. Pinho, “Scheduling parallel real-time
tasks using a fixed-priority work-stealing algorithm on multiprocessors,”
in Industrial Embedded Systems (SIES), 2013 8th IEEE International
Symposium on, June 2013, pp. 89–92.

