
A Model-Based ESL HW/SW Co-Design Framework

for Mixed-Criticality Systems

F. Federici, V. Muttillo, L. Pomante, P. Serri, G. Valente

Università Degli Studi Dell’Aquila - Center of Excellence DEWS

Via Giovanni Gronchi, 18, 67100, L’Aquila, Italy

{vittoriano.muttillo, paolo.serri, giacomo.valente}@graduate.univaq.it

{fabio.federici, luigi.pomante}@univaq.it

Abstract — In the last few years, model-based design

techniques have provided a set of design environments which

facilitate the designers work. Engineers can find and correct

errors, analyze performances and early validate a system, by

minimizing the temporal and financial impact of system

modification. Moreover mixed-criticality systems are becoming

of great interest in embedded system area but there is a lack of

model-based tools in their development. In such a scenario, this

work focuses on the development of a framework for modeling,

analysis and validation of mixed critical systems, through the

exploitation of a "Model-Based Electronic System Level (ESL)

HW/SW Co-Design" methodology, refined to use estimates,

metrics and simulations able to consider mixed-criticality and

real-time requirements. The final goal is an extension of an

existing HW/SW co-design methodology in order to support real-

time mixed-criticality embedded systems development in

industrial and commercial contexts.

Keywords — electronic design automation; hardware/software

co-design; mixed-criticality systems

I. INTRODUCTION

Despite the widespread diffusion of embedded systems, a
well-defined and general Electronic-System Level (ESL) design
flow is still missing. The main problems in embedded systems
design are to perform an accurate modeling of functional and
non functional requirements, and then to check their
satisfaction before the final implementation steps. Designers
commonly use system-level models (e.g. block diagrams,
UML, SystemC, etc.) to gain a complete understanding of the
problem and to evaluate the quality of different software to
hardware mappings by simulating the related system behavior.
In such a context, proper software tools are fundamental to
support designers to reduce costs and the overall complexity of
systems implementation. Unfortunately, there is no mature
general methodology for this purpose and the design process
often relies on empirical criteria and qualitative experience-
based assessments. Furthermore, the use of multi-core and
many-core platforms for mixed-critical embedded systems
allows increasing performances but introduces isolation
problems in a shared resources scenario that could be very
complex to manage.

The remainder of the paper is organized as follows: Section
II provides an overview of mixed-criticality systems, Section
III describes the proposed HW/SW co-design framework,

whereas Section IV discusses a solution to adapt the adopted
model of computation (MoC), based on Communicating
Sequential Processes (CSP) to the real-time and mixed-critical
world. Finally, Section V reports some conclusive
considerations and presents future work activities.

II. BACKGROUND

A critical industrial challenge is to integrate multiple
applications with different criticality-levels on a single
computing platform, both efficiently (in terms of costs) and
correctly (to preserve the proper execution). These platforms,
usually referred as Mixed-Critical Systems [1], concurrently
run applications for which failures may cause risks and danger
for people, large losses of money or extensive environmental
damages, and others applications for which the effects of a
malfunction are normally tolerable and manifest themselves
primarily as a Quality of Service (QoS) decay. In this case, the
system is designed in order to guarantee that the less critical
applications are unable to disturb high critical ones (the most
expensive to be designed and validated). The use of
multi/many-core embedded platforms allow to significantly
improve the integration and performance of this particular
systems, but a related relevant problem is to ensure an adequate
management of shared resources.

III. PROPOSED FRAMEWORK

In the context of mixed-criticality systems design, this work
proposes a specific framework, based on a proper extension of
an existing HW/SW co-design methodology [2], that introduce
the possibility to specify real-time and mixed-criticality
requirements in the set of the non-functional ones.

The system behavior modeling is based on the CSP MoC
[3], that allows modeling system behavior as a network of
processes communicating through unidirectional synchronous
(i.e. rendezvous-based) channels. The following example
shows a scenario with three main CSP subsystems:

 Stimulus: single instance process activation

 System: System Behavior Model (SBM)

 Display: output feedback for offline analysis

So, the developed system is modeled by a set of processes
and internal or external channels, as shown in Fig. 1.

Fig. 1. SystemC CSP Model

The reference ESL HW/SW co-design flow is shown in
Fig. 2. The entry point is the System Behavior Model (SBM)
based on the CSP MoC. In order to list and describe the basic
HW elements available to automatically build the final HW
architecture, a proper Technologies Library (TL) provides a
characterization of available processors, memories and
interconnection links. The first step of the proposed co-design
flow is the Functional Simulation where SBM is simulated to
check its correctness with respect to some Reference Inputs. If
SBM is not correct (i.e. wrong outputs or critical conditions
such as e.g. deadlocks) it should be properly modified and
simulated again. The next step aims at extracting as much as
possible information about the system by analyzing the SBM
while considering the provided TL. This step is supported by
Co-Analysis and Co-Estimation activities.

Fig. 2. The reference co-design flow

Finally, the reference co-design flow reaches the Design
Space Exploration (DSE) step. It includes two iterative
activities:

 “HW/SW Partitioning, Mapping and Architecture
Definition”, based on a genetic algorithm that allows to
explore the design space looking for feasible
mapping/architecture items suitable to satisfy imposed
constraints

 “Timing Co-Simulation”, that considers suggested
mapping/architecture items to actually check for
constraints satisfaction.

If the suggested mapping/architecture does not meet
defined constraints, the designer should perform a new round
of design space exploration by changing some exploration
parameters, by modifying the starting SBM, by enriching the
TL with new elements, or by relaxing some constraints. When
the mapping/architecture item proposed by the DSE step is

acceptable, it is possible to proceed with system
implementation (i.e. Algorithm Level Flow). For this purpose,
the SW-mapped processes are typically transformed in C code,
with the optional support of an embedded real-time OS,
whereas the HW-mapped ones are transformed in synthesizable
HDL code or implemented by means of existing COTS
component depending on the final system architecture. This
step is fully based on existing commercial algorithm-level
methodologies and tools that are out of the scope of this work.

IV. CSP FOR MIXED_CRITICAL REAL-TIME

APPLICATIONS

The CSP-like notation adopted in the reference HW/SW
co-design methodology doesn’t match very well with real-time
(RT) constraints (in fact, it actually consider only Time-To-
Completion constraints) and mutual exclusion issues on shared
resources accesses. Therefore, this work proposes an
extension/transformation of the CSP-like notation in order to
overcome these problems. The idea is to identify a set of items
classified as follows:

 s (statement): C statement with C++/SystemC data
types;

 p (process) or job (J): consists of a set of s divided into
two sections (init and never-ending while) encapsulated
in a SystemC SC_THREAD;

 t (task): set of competing and/or cooperating p or J (with
communication rule implemented through CSP-like
SC_CSP_CHANNEL) encapsulated in a SystemC
SC_MODULE with a given criticality;

 k (container): subsystem composed of one or more t
with a given criticality;

 a (application): application (or system) composed of
one or more k (mixed-criticality system);

With these particular items, it is possible to model the
system behavior by means of a set of tasks as shown in (1),
where n is the number of task instance or processes (jobs).

 ti = {Ji,1, Ji,2, … , Ji,n} ≡ {pi,1, pi,2, … , pi,n}

In this way, classical real-time parameters (tasks period,
deadlines, computational time and so on) can be estimated
during the simulation step, mapped on the CSP model, and
checked with respect to the ones entered by the designer.

The next step to consider is in which way to model relation
constraints. In fact, in some applications, processing cannot be
executed in an arbitrary manner, but must comply with
precedence relation constraints defined at design stage. These
relations are usually described by means of Directed Acyclic
Graph (DAG). However, in general, the CSP-based modeling
approach never create DAG. For this purpose, there are two
possible solutions:

 put all the s of the while section in a super_s so that the
while section of each p becomes a DAG that is repeated
(a)periodically;

 force the designer to write p as a DAG (by separating
init and while into two p) and to work on (a)periodical
sequence of p in t .

Finally, preemption has been introduced by means of points
of preemption included in p, with a wait() in the scheduling
policy simulation step. In this phase mutual exclusion
constraints on shared resources have not been considered.

In such a scenario, an example model is shown in Fig. 3.
The simple starting example is an application represented by
one k, composed of eight t. Each t is composed of ni p (J), and
s, where ni is the number of processes of the task ti.

Fig. 3. CSP representing the SBM

The work aims to model different scheduling policies, in
order to allow an extend DSE step to provide suggestions also
about such policies, and to use the proposed framework for the
convergence between CSP-like and RT model (i.e. given a CSP
model not conforming to the classical RT “template”, to obtain
a proper compliant transformation), also introducing different
levels of criticality.

Finally, to offer an integrated IDE for embedded systems
electronic designers with real-time and mixed criticality

requirements, the GUI implementation exploits the Eclipse
Modeling Framework (EMF) plug-ins and MDE technologies,
which can be used to model a system and to generated code or
other outputs. Sirius technology is used to allow to create
custom graphical modeling workbenches by leveraging the
Eclipse modeling tool, whereas Acceleo Object Management
Group (OMG) Meta-Object Facility (MOF) Model to Text
Language (MTL) is used for model transformation from CSP
to SystemC.

V. CONCLUSION AND FUTURE WORKS

This work has proposed an extended and innovative ESL
Electronic Design Automation (EDA) methodology (and
related tools) supporting the development of Mixed-Criticality
Embedded Systems. For this, after defined a CSP to RT model
transformation, the next step is to further enhance the DSE step
to suggest to the designer how to manage different criticality
levels of applications, components, and tasks, by means of
relevant available technologies (e.g. hypervisors, physical
partitioning, etc.). The final result will be a methodology able
to support mixed-criticality systems developments by
suggesting both the platform and mapping solutions for the
specific mixed-criticality application.

ACKNOWLEDGMENT

This work has been supported by the Artemis-JU AIPP
2013 EMC2 (GA 621429) project.

REFERENCES

[1] Burns, A., & Davis, R. (2013). Mixed criticality systems-a review.
Department of Computer Science, University of York, Tech. Rep.

[2] Pomante, L. (2011, September). System-level design space exploration
for dedicated heterogeneous multi-processor systems. In Application-
Specific Systems, Architectures and Processors (ASAP), 2011 IEEE
International Conference on (pp. 79-86). IEEE.

[3] Hoare, C. A. R. (1978). Communicating sequential processes (pp. 413-
443). Springer New York.

