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Abstract—Real-time systems have become increasingly com-
plex and therefore requires scalable development solutions. Com-
bining component-based and SOA paradigms can be one of such
solutions by enforcing loosely coupled reusable components and
suitable composition mechanism to construct systems. In this
paper we demonstrate our solution using the X-MAN component
model and its real-time extension on an industrial case study in
automotive.
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I. INTRODUCTION

Real-time systems have become increasingly complex and
therefore requires scalable development solutions. Component-
based development promotes systematic reuse of pre-existed
components. On the other hand SOA paradigm fosters loosely
coupled and self-contained functional units. The combination
of the two approaches provides a solution to the above prob-
lem. In this paper we demonstrate this combination using the
X-MAN component model and its real-time extension applied
to an industrial case study in the automotive domain.

II. CASE STUDY

Provided by IXION Industry and Aerospace', the case study
is the navigation system part of a highly automated driving
vehicle control system. In brief, the system receives data from
in-car cameras and sensors, determines its location and sur-
rounding obstacles, and visualise them on the map. The system
requires concurrency and strict timing to efficiently handle data
and perform location calculation and image processing.

III. OUR APPROACH
A. The X-MAN Component Model

In the X-MAN component model [9], [10] (Fig. 1), there
are two basic entities: (i) components, and (ii) composition
connectors. Components are units of design with behaviour,
which is exposed by its provided services. They can be
atomic or composite. An atomic component (Fig. 1(a)) is a
unit of composition and computation. Its computation unit
(CU) self-contains implementation of the services it exposes
via invocation connector (IC). Components are composed via
composition connectors (Fig. 1(b)) into composite components
(Fig. 1(c))). X-MAN provides four basic composition con-
nectors, which are Sequencer, Selector, Aggregator, and Par.
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Fig. 1. The X-MAN component model.

Sequencer provides sequencing, Selector offers branching,
Aggregator provides a faade, whilst Par enables parallel invo-
cation. In a composite component sub-components do not call
each other. Instead, the composition connector coordinates the
sub-components’ execution. For instance, in the bank system
in Fig. 1(d), the sequencer SEQ first calls ATM to get customer
inputs and then calls the bank branch BB to handle the inputs.

Behaviour of single components can be adapted by adaptor
connectors. They are Loop and Guard. Loop provides iteration,
while Guard gating.

The execution semantics for X-MAN is control-driven, with
explicit data routing. The latter cab be horizontal or vertical.
Horizontal data routing is between sub-components within a
composite component. Vertical data routing is data propagation
between the interface of a composite component and its sub-
components.

B. Real-time extension

In order to support real-time system development, we ex-
tended the X-MAN component model with the concept of real-
time view to capture timing concerns. Within this view, pe-
riodic computations are implemented as recurring invocations
of component services by using a Timer loop? with a period
attribute. In addition, Constraints are to capture deadlines and
priorities, whilst Data elements shared resources.

This extension is fully implemented in the X-MAN II
toolset® [6] which includes a graphical designer and assembler,
and a code generator.

IV. SYSTEM CONSTRUCTION

After the analysis of the case study, we construct the system
bottom up starting from atomic components. An example of

2Timer loop is an adapter connector.
3X-MAN 1II toolset - Availableathttp:/www.mub.eps.manchester.ac.uk/
xman/



such is depicted in Fig. 2. The EKF component, which imple-
ments the Extended Kalman filter?, exposes a service called
CalcEKF, which takes six inputs (GPS, IMU, CAN, car_data,
ekf vars_data,headingMap) and produces one output (ekfOut).
The behaviour of this computation is implemented in C
language within the computation unit CU.
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Fig. 2. EKF atomic component.

Once validated, components can then be stored in a repos-
itory as in Fig. 3. Thereon, they can be are retrieved to
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Fig. 3. Component repository.

construct new (composite) components. An example of such
is depicted in Fig. 4. We reused two previously built com-
ponents QuadrantDetection and MapGeneration by
composing them with two connectors which are SEQ/ and
GRDO. The connectors together first triggers obstacle detection
service Detect, then conditionally triggers map generation
service GenerateMap. This sequence of computation is ex-
ported via a new service called Detect_GenerateMap. Clearly,
this demonstrates that we hierarchically constructed systems.
It also shows that every step of construction gives us a
new component with new services with complex behaviours,
realised by the involved components and connectors.

Similarly, in Fig.5 we use the Par0 connector to compose
LDMInit, LocalisationInit and MapGenInit tocon-
currently initialise three main sub-systems of the system. The
new service Detect_Generate_Map acts the entry point of the
navigation system.

The real-time view of the system is depicted in
Fig. 6. Each of the three components Localisation,
MapGeneration and LDM is adapted by a Timer loop (e.g.
MapGenTimer) and a constraint (e.g. Localisation Constraint).

“https://en.wikipedia.org/wiki/Extended_Kalman_filter
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Fig. 4. MapDataGeneration composite component.
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Fig. 5. Concurrent sub-systems.

Shared resources, such as shared_mm_data, are also specified.
Finally, the system is completed by aggregating the composite
component in Fig. 5 with the timing view in Fig. 6. The result
is illustrated in Fig. 7. The system is executed by calling the
service Detect_Generate_Map, which initialise and enable the
real-time adapted components.
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V. RELATED WORK

There have been many approaches in constructing SOA
architectures such as BPEL [13], JOpera [12], SCA [11].
However, they are restricted to the domain of informative
systems having web services as the implementation. Support
for real-time systems is completely lacking. In contrast, X-
MAN supports both SOA architectures and real-time.

Real-time system development over the years has received
a number of solutions in the form of component models
(ProCom [4], UML with MARTE [2]), synchronous languages
(Esterel [3], Lustre [8], SIGNAL [7] ), as well as specialised
programming languages with real-time extensions (Ada 95 [5],
Java RTS [1)).

ProCom has two layers: (i) ProSave to model passive and se-
quential components; (ii) ProSys to model active components
and systems. Compared to X-MAN, ProCom does not make
use of pre-defined composition operators (for coordination)
which makes the composition more ad hoc and the control
logic implicit. ProCom does not have a support tool either.
MARTE is a UML profile which enables annotating UML
diagrams with real-time constraints. As UML components are
objects which are tightly coupled an fine grained. As a result
they are not suitable for SOA.

Synchronous languages abstract the concept of time as log-
ical ticks. In every tick, computation and data communication
perform instantaneously. Components in these languages are
function blocks, or state machines, which are wired up using
data paths. While support on real-time and reactive system
construction is strong, the components are not service oriented
and hence support of SOA does not exist. This would make
systems constructed in these languages (e.g. Esterel) difficult
to integrate with other (potentially non-) real-time systems
through a standard interface.

Ada 95 with real-time annex and Java RTS are also capable
of developing real-time systems. Components in these lan-
guages are ‘tasks’. However, they are essentially programming
languages and therefore do not offer the right abstraction for
complex system modelling. Moreover, SOA is not directly
possible with these languages.



VI. CONCLUSION

In this paper, we have presented our solution to developing
an SOA real-time system using our X-MAN component model
and its extension. The construction was performed using our
tool-set. In the future, we will improve the code generator to
enhance the quality of generated code. Furthermore, we are
planning to implement a model transformer to generate task
model for timing analysis and validation.
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