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Motivation: Reconcile Computation and Control

Context: smart embedded systems involve increasingly complex tasks and
parallel computing resources, in the control loop
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Motivation: Reconcile Computation and Control

→ Parallelizing compilation for block-diagrams and state machines
(so-called synchronous programs), integrating non-functional constraints:
e.g., porting computational libraries to safety-critical environments is a
burning challenge

→ Modeling the system and providing guarantees that parts of the
system achieve a desired contract: e.g., timing composability , isolation

→ New applications such as online optimization, high-performance
simulation, monitoring, data analytics in control systems

→ Also, security is a growing dimension, from logical/software bugs to
side-channel attacks and hardware fault injection
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Motivation: Reconcile Computation and Control

Prototypical scenario: online optimization in the loop of a safety-critical
system

E.g., (Fast) Model Predictive Control : anticipate input sequence with
receding horizon, relying on convex solvers with incrementally refined
precision, possibly running in parallel with a safe but less optimized PID
controler

(courtesy Morari, Hempel, ETHZ)
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Correct and Efficient Concurrency “By Construction”
Between the hammers of

correction, programmability , certification, performance
and the anvil of cost

Proposed Approach
... or, when reliability meets efficiency

1. A single source code should serve
I as an abstract model for verification
I as an executable model for simulation
I as the high level program from which target-specific

sequential/parallel code is generated

2. Provide correctness and safety guarantees throughout the design and
refinement phases, and through compilation

3. Rely upon proven and efficient execution environnements

4. Rely upon formal models of SW stack and HW platform, to improve
quality and ease certification 5 / 16



Case Study – Passenger Exchange

I Mission
I Issue commands to open or

close doors according to a
given plan

I Announce imminent door
opening/closing to
passengers

I Warn the traffic supervision
when the passenger exchange
cannot be completed

I Safety
I While the train has not

stopped securely, the doors
cannot be opened

I Only properly aligned doors
can be opened

I The train is only allowed to
leave when all doors are
closed
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Case Study – Experimental Platform: Zynq 7k
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Case Study – Mixed-Time-Critical Chronogram
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Case Study – Tasks Missing Deadlines

Time-triggered protocol

Time-critical
I Computing (TCCP)

I Copy to buffer (TCTB)

I Copy from buffer (TCFB)

Non-time-critical
I Computing (NTCCP)

I Copy to buffer (NTCTB)

I Copy from buffer (NTCFB)
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Case Study – Platform Configuration

I ARM core 0: non-time-critical and non-critical tasks, Linux

I ARM core 1: time-critical tasks, bare-metal environment, software
stack running in on chip memory of 256KB (code and data)

I FPGA: communication buffers

Hardware configuration (Vivado)
Resource Used Available Util%
Slice LUTs 2345 53200 4.40%
Slice Registers 2815 106400 2.64%
Block RAM Tile 8 140 5.71%
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Case Study – Modeling/Programming Flow

Aiming for SIL 4 certification→ synchronous programming methodology

Listing 1: Simplified check commands in Heptagon

node check_command(door_command : command; door_map : int)

returns (safe_command : command)

let
safe_command = if door_map <> -1 then door_command else None;

tel

task check_commands(unpunctual door_commands : command^n; door_map : int^n)

returns (safe_commands : command^n)

let
if ontime door_commands then
safe_commands = map<<n>> check_command(door_commands, door_map);

else
safe_commands = None^n;

end
tel
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Case Study – Modeling/Programming Flow

Aiming for SIL 4 certification→ synchronous programming methodology

Listing 2: Snippet of the passenger exchange in Heptagon

node passenger_exchange(train_position : int)

returns (safe_door_commands : command^n; departure_authorization : bool)

var
platform : int;

unpunctual door_map : int^n;

safe_door_map : int^n;

unpunctual door_commands : command^n;

let
platform = get_platform(train_position);

door_map = compute_door_map(platform);

safe_door_map = check_door_map(door_map, platform);

door_commands = compute_commands(door_map);

safe_door_commands = check_commands(door_commands, safe_door_map);

departure_authorization = check_departure_conditions(safe_door_commands);

tel
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Case Study – Modeling/Programming Flow

Aiming for SIL 4 certification→ synchronous programming methodology

Listing 3: Time-critical C code generated by the Heptagon compiler
void passenger_exchange_tc(int train_position,

command safe_door_commands[8],

bool* departure_authorization) {

int platform, door_map[8], safe_door_map[8];

command door_commands[8];

bool ontime1, ontime2;

get_platform(train_position, &platform);

send(0, &platform, sizeof(int), TC);

ontime1 = receive(1, door_map, sizeof(int) * 8, TC);

check_door_map(ontime1, door_map, safe_door_map);

ontime2 = receive(2, door_commands, sizeof(command) * 8, TC);

check_commands(ontime2, door_commands, safe_door_map, safe_door_commands);

check_departure_conditions(safe_door_commands, departure_authorization);

}
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Case Study – Modeling/Programming Flow

Aiming for SIL 4 certification→ synchronous programming methodology

Listing 4: Non-time-critical C code generated by the Heptagon compiler
void passenger_exchange_ntc() {

int platform, door_map[8];

command door_commands[8];

receive(0, &platform, sizeof(int), NTC);

compute_door_map(platform, door_map);

send(1, door_map, sizeof(int) * 8, NTC);

compute_commands(door_map, door_commands);

send(2, door_commands, sizeof(command) * 8, NTC);

}
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Case Study – Model/Code Metrics

Software specifications metrics
Functions ≈ 30
Requirements ≥ 100

Code metrics Files LOC
Heptagon sources 27 2741
C generated from Heptagon 70 7014
Additionnal C code 11 611
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Point of View – Models of Computation

Moving from abstract MoC to concrete programs

I ?DF models: lessons from research tools (Ptolemy, StreamIt) and
production (COMPAAN, ΣC)

I What is the role of static analysis in the abstraction of concrete
programs into manageable MoCs?

I What is the role of profile-driven and dynamic analyses (see RWTH
and Silexica’s MAPS framework)?

I Competition for resources: responsibility of the tool or programmer
or both?

I What should be dealt with statically, dynamically, how to integrate
non-functional constraints and objectives?

I Interaction with “concrete programs”, including memory
management?

I Issues with expressiveness, modularity, and fundamental research
needed to clean the chaotic MoC landscape
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Point of View – Programming Languages
Research program in language design

I Build on the synchronous hypothesis in control systems
→ relaxation: synchronization up to bounded delay (n-synchrony)
→ efficiency: capture fine-grain schedules into the clock calculus

I Explicit parallelism in synchronous/block-diagram languages
→ multi-threading and/or explicit distribution
→ automatic synthesis of (loosely) time-triggered communications

Tools and software platforms

I Full automation, rigorously established, correctness by construction

I Runtime environment, (asymmetric) multi-processor configuration

Hardware platforms

I Facilitate isolation, functional and non-functional

I Enable timing-composable implementations
... while preserving efficient and scalable common-case performance
... it can be done without radical changes on the (micro)architecture
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