

ARTEMIS 2013 AIPP5 EMC²

ARTEMIS Technology Conference Madrid, October 6, 2016

Executable Application Models and Design Tools for Mixed-Critical, Multi-Core Embedded Systems

Frank Oppenheimer OFFIS e.V. frank.oppenheimer@offis.de Albert Cohen INRIA albert.cohen@inria.fr

ARTEMIS 2013 AIPP5 EMC² ARTEMIS Tech Madrid, Oct-Models, Code, Tools! Executable for Mixed-Crass

Frank Oppenheimer OFFIS e.V. frank.oppenheimer@offis.de Albert Cohen INRIA albert.cohen@inria.fr

Highlights

- Modeling, tool highlights
 - Seamless development process for EMC2 applications
 - Application level modelling kit for mixed-critical applications
 - Specification of functional and extra-functional properties
 - Simulation of fully deployed system models on virtual multi-core platforms
 - Analysis and optimization of MCMC systems
 - Integration of tools into framework
 - Estimation and evaluation of design decisions
 - Determination of optimal mapping and scheduling
- Development, use cases
 - Tools and methodologies applied to internal use-case
 - Ongoing evaluation and knowledge transfer
 of the proposed methods and tools with Living Lab and 3rd party use cases

Internal evaluation example

Example: Safe optimization of QoS in Mixed-Critical Applications

- Safety critical System
 - 3 parallel Flight Control Tasks (2 ms)
 - 6 Sensor Channels (2-30ms)
 - 3 Sensor Compute Tasks (2 ms)
 - Small violations accumulate to crash

- High Throughput Video application
 - Mission critical object detection
 - Minimal 6 frames/second
 - Demand for high data throughput

Internal evaluation example

Dynamic Criticality Modes

Static schedule (WCET based)

167 ms frame

Criticality Policy	# Degraded	# Full Quality	Av. Throughput				
Static	30	0	1055 Kb/sec				
Dynamic	13 (±3)	17(±3)	1923 Kb/sec (182%)				

Internal evaluation example

- Modelling approach presented and discussed within the project
- Integrate Multi-core RTOS/platform models with hardware platform
- Joint effort for integrating the modelbased quadrocopter description into platform implementation

Future: triple-modular redundancy proof-ofconcept platform for fail-operational mixed-criticality systems

EMC² Technology transfer

		C_ADAS and C2X	C_Highly automated riving	с_мип Domain Avionic rchitecture	C_Hybrid Avionics itegrated Architecture	с_мРзос software and sols for Space	C_Platform Applications	כ_סרואפא מווט פופטנווט otors in industrial oplications	C_Manufacturing quality ontrol by 3D inspection	c_seismic surveying by nip	C_Medical imaging
Tech. No.	Technology title	7.1	17.2	18.1	18.2	19.2	r9.4	10.1	10.4	12.1	12.3
2.1	DSE: DSE-Ychart: DSE using the Y-chart apporach and DSE for mixed-critical parallel embedded platforms (TNO,	3					3	•			
2.2	HW/SW support to mixed-critical parallel embedded platforms (UNIVAQ)						2				
2.3	"art2kitekt" - A toolset to model and analyze mixed criticality, multi core real-time systems (ITI)					2			4		
2.4	Optimal internal resource assignment algorithm for scheduling a task set (TUE)	4					1				
2.5	Formal verification in model driven development of multi- core systems (TUE)	4									
2.6	Pareon Verify - dynamic program verification of multicore software + Code quality analysis tools (Vector, CINI)			2							3
2.7	Application Modelling and Implementation Methods (OFFIS, UoMAN)		2		3			2		1	

Technology transfer phases			
Definition			
Evaluation			
Development			
In Transfer			
Transfer complete			

Scope 1: Complete implementation into use cases in the project

Scope 2: Partial implementation into use case

Scope 3: Will be transferred to LL (WP7-12) but not implemented into use case

Scope 4: Topic for future applications; technology transfer subsequent to EMC2

ECSEL JU