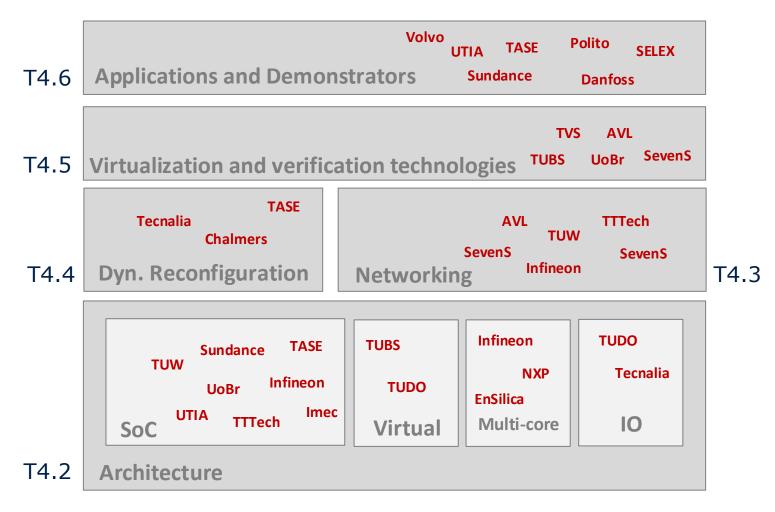


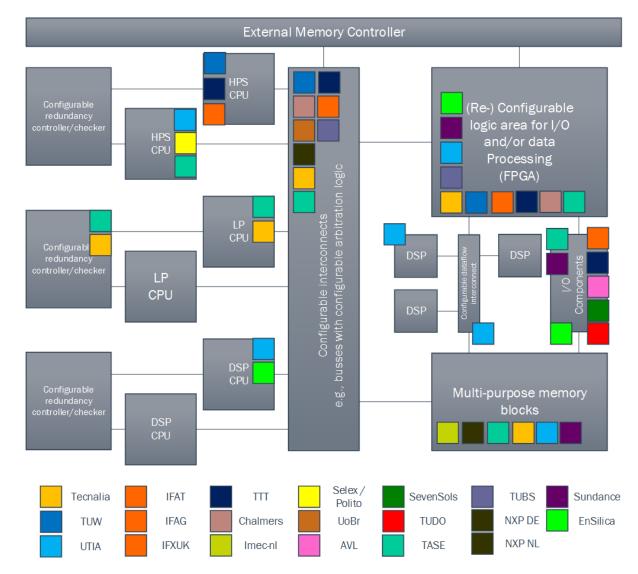
ARTEMIS 2013 AIPP5 EMC²

Mixed Criticality Workshop Barcelona, November 22, 2016

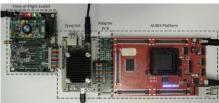
WP4 HW Architectures & Concepts


Alexander Lipautz , Infineon AT e-mail: Alexander.Lipautz@infineon.com , (phone) Mladen Berekovic, TU Braunschweig e-mail: <u>berekovic@c3e.cs.tu-bs.de</u>, (phone) Haris Isakovic, TU Wien e-mail: <u>haris@vmars.tuwien.ac.at</u>, (phone)

MC² Mixed Criticality Workshop EMC2-WP4 – Technical Overview


Activities bundled across 5 Technology Lanes:

Mixed Criticality Workshop EMC2-WP4 – Technical Overview



Mixed Criticality Workshop EMC2-WP4 – Objectives / Highlights

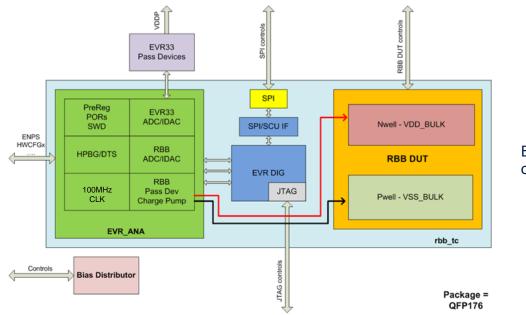
USPs/Highlights of WP4

- Architecture and Hardware support for mixed-criticality applications on multi-core platform along the 5 technology lanes
 - EMC2-DP platform *Reconfiguration (T4.4)*
 - Software Defined Asymmetric Multiprocessing on EMC2-DP ZYNQ platform – Architecture(T4.2)
 - Heterogeneous TTNoC many-core architecture Networking (T4.3)
 - High-Accurate Distributed Control Systems Networking (T4.3)
 - Analog-Mixed-Signal Power System for MC Multi-Core Architecture
- System optimisation for MCMC applications
 - Time-of-Flight 3D Imaging Application & Demonstration (T4.6)
 - Application-specific Exploration and Optimization MCMC Hardware with Virtual Hardware platform – Virtualization
- Status at start of period 3:
 - Hardware platforms and tools applied to internal use-cases
 - Ongoing evaluation and knowledge transfer of the proposed technologies and tools with other WPs and Living Labs

ECSEL JU

Mixed Criticality Workshop EMC2-WP 4 – Progress & Results

WP4 Achievements per technology

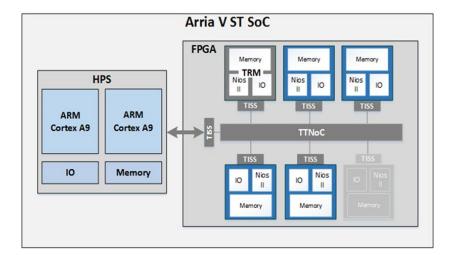


Mixed Criticality Workshop EMC2-WP4 – Highlights: T4.2

Analog-Mixed-Signal Power System (Infineon)

- First full functional safety compliant Analog-Mixed-Signal Power System for multi core and mixed critical systems including standby controller, robust concept implementation, out of operating range functionality is now fully available for next generation of products.
- It introduce highest flexibility and have very efficient regulators with SMPS power optimization features, revers back biasing and dynamic voltage scaling.

Block diagram of the concept



Mixed Criticality Workshop EMC2-WP4 – Highlights: T4.3

Heterogeneous TTNoC many-core architecture (TU Wien)

- Objective: Building a deterministic heterogeneous architecture on Altera Arria V SoC
- > Key achievements:
 - Integration of TTNoC on the Arria V SoC platform.
 - The architecture combines 4 Nios 2 components and an ARM Cortex A9 component.
 - Full time and space isolation of individual components, designed for mixed-criticality applications.

Block diagram of the architecture

EMC² Mixed Criticality Workshop EMC2-WP4 – Highlights, T4.4/4.6

Software Defined Asymmetric Multiprocessing on EMC2-DP ZYNQ platform

- EMC2-DP is Sundance HW platform enabling to use System on Module Component with ZYNQ.
- EMC2-DP is compatible with the Xilinx Software Defined System on Chip (SDSoC 2015.4) flow. UTIA & Sundance designed support for SDSoC.
- EMC2-DP parameters: MicroBlaze and UTIA EdkDSP floating point accelerator deliver:
 - Adaptive LMS filter: 776 MFLOP/s
- This is 2.3x faster than 666 MHz ARM A9 CPU optimized SW with NEON vector proc. unit.
- EMC2-DP HW image processing accelerators are generated by the SDSoC from C. See figure: Edge detection on Full HD Video:
 - EMC2-DP ARM + SDSoC HW: 60.0 Frames/s
 - EMC2-DP ARM + platform SW: 5.3 Frames/s

EMC2-DP

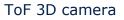
Demonstration

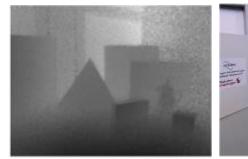
Mixed Criticality Workshop EMC2-WP4 – Highlights: T4.3/T4.6

High-Accurate Distributed Control Systems (SevenS)

- Development of new White Rabbit nodes for the project to improve scalability and stability of the distributed frequency:
 - White Rabbit ZEN
 - White Rabbit LEN
- In terms of time in distributed networks considered as critical data, we have adapted White-Rabbit (able to provide time with <1ns accuracy) and also using our own devices, two distribute time over 14 hops maintaining synchronization capabilities with a jitter in 1-PPS signal under 250ps
- A new clock distribution mechanism (Peer-to-Peer and PeerDelay) to provide White-Rabbit with the possibility of being adapted to industrial Ethernet networks, which opens doors to the development of redundancy protocols such as High-availability Seamless Redundancy (HSR).

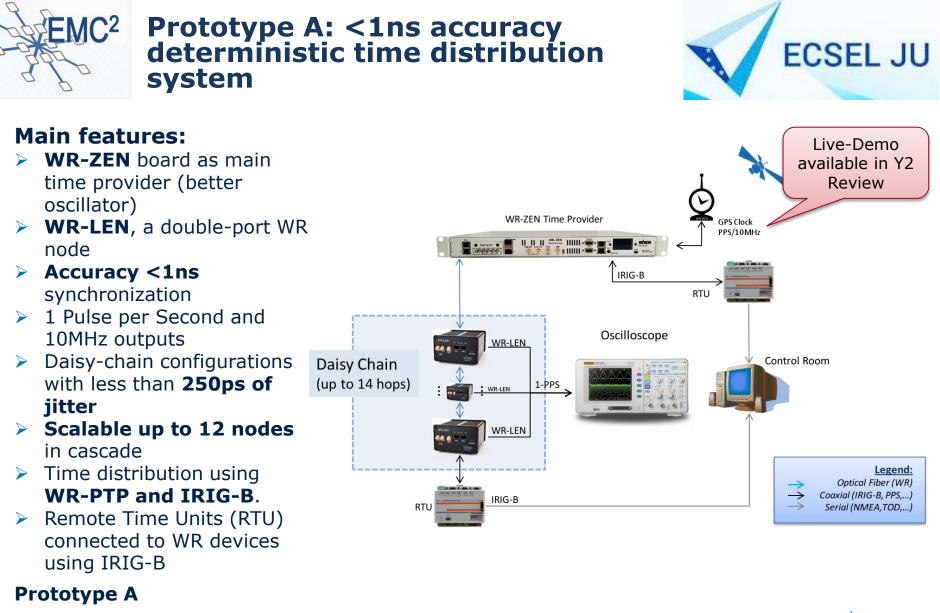
ECSEL JU


Mixed Criticality Workshop EMC2- WP4 – Highlights: T4.6



Time-of-Flight 3D Imaging (Infineon)

- Objective: Exploration of novel Time-of-Flight 3D imaging concepts targeting multi-cores and mixed-criticality
- Key achievements
 - ToF / RGB sensor fusion
 - First time high-performance sensor fusion solution for mobile devices achieved
 - Upscaled resolution, increased sharpness, less noise, less motion artifacts, high FPS
 - > HW-accel. ToF processing
 - Novel Zynq-based system solution for mixed-critical app.

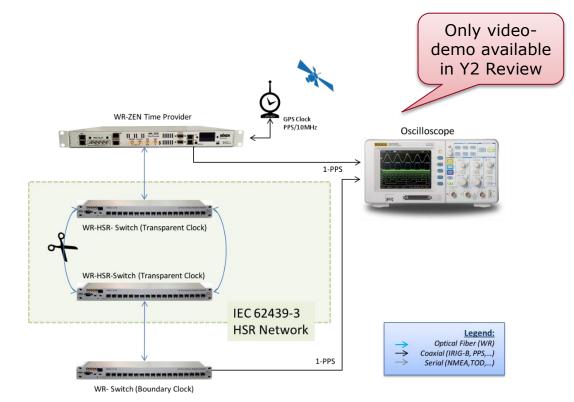


Low-res. ToF image

High-res. RGB image

ToF/RGB fused 3D image

Setup to demonstrate the scalability of the timing solution and also the utilization of different timing protocols in the same network.



Prototype B: Single point of failure avoidance using Transparent Clocks (Redundancy Protocols)

Main features:

- > <1ns synchronization</pre>
- I Pulse per Second (1-PPS) and 10MHz outputs
- Redundancy Capabilities (HSR implementation for timing)
- Able to recover from a link failure in ~zero-time.
- 1-PPS skew improvement in terms of ~50ps

Prototype B

- Implementation of the HSR redundancy protocol using Transparent Clocks to recover from a system failure in ~zero-time.
- Demo will consist in how two devices connected to a HSR ring are able to remain 1-ns synchronized even after the main time reference is lost (link down).

Mixed Criticality Workshop EMC2-WP 4 – Technology Transfer

			WP7					WP8		6d M				WP10				LIAW				WP12							
			UC_ADAS and C2X	UC_Highly automated driving	UC_Design and validation of next generation hybrid powertrain / E-Drive	UC_Modelling and functional safety analysis of an architecture for ACC system	UC_Infotainment and eCall Application Multi- Critical Application	UC_Next Generation Electronic Architecture for Commercial Vehicles	UC_Multi Domain Avionic Architecture	UC_Hybrid Avionics Integrated Architecture	UC_MPSoC Hardware for Space	UC_MPSoC Software and Tools for Space	UC_Optical Payload Applications	UC_Platform Applications	UC_Radar Payload Application	UC_Drives and electric motors in industrial applications	UC_Identification and authentication	UC_Tracking	UC_Manufacturing quality control by 3D inspection	UC_Multimedia communication WEBRTC	UC_Open deterministic networks	UC_Autonomic home networking	UC_Ultralowpower high datarate communi- cation	UC_Synchronized low-latency deterministic networks	UC_Seismic surveying by ship	UC_Video surveillance for critical infra- structure	UC_Medical imaging	UC_Control applications for critical infra- structure	UC_Railway applications
	No.	Technology title	T7.1	T7.2	T7.3	T7.4	T7.5	T7.6	T8.1	T8.2	Т9.1	Т9.2	Т9.3	T9.4	79.5	T10.1	T10.2	T10.3	T10.4	Т11.1	Т11.2	T11.3	Т11.4	T11.5	T12.1	T12.2	T12.3	Т12.4	T12.5
WP4	4.1	Heterogenous Multiprocessor SoC architectures (T4.1)	2					2			2		1				4												
		Dynamic reconfiguration on HW accelerators and reconfigurable logic (T4.2)			1						1			1															
	4.3	Networking (T4.3)	2		1												4					3	3			2			
	4.4	Verification and Validation Techniques (T4.4)			1						3						4												

Technology transfer phases								
Definition								
Evaluation								
Development								
In Transfer								
Transfer complete								

Scope 1: Complete implementation into use cases in the project

Scope 2: Partial implementation into use case

Scope 3: Will be transferred to LL (WP7-12) but not implemented into use case

Scope 4: Topic for future applications; technology transfer subsequent to EMC2

ECSEL JU