art2kitekt: Modeling and Analyzing Multi-Domain Mixed-Criticality Applications

Sergio Sáez ITI, Spain

Outline

- Problem overview
- Goals and expected tool features
- Art2kitekt tool architecture
 - Domain-specific profiles
 - Interoperability and extendability
- Current status
- Expected results within EMC²

Problem overview

- Mixed-criticality applications from different domains have
 - Different kinds of execution platforms
 - Multiple processor connected by different communication channels (point-to-point links, NoC, etc)
 - Shared memory multiprocessors
 - Different criticality concept/models
 - Temporal isolation on shared priority spaces.
 - Spatial and temporal isolation by using partitioned systems
 - Different certification needs

There is no analysis method that addresses every aspect in every application domain

Main goal

To allow the engineer (the **user**) to **model** only the kind of systems we (the **tool**) are able to **analyse**

E.g. in AADL and UML MARTE the designer can model systems for which there is no analysis techniques available

EMC²: Mixed Criticality Applications and Implementation Approaches HiPEAC 2015 - Amsterdam, January 20th, 2015

4

Expected features

- An integrated tool chain that allows the engineer to:
 - Configure the execution platform with the application specific details, e.g. physical devices, resources, RTOS overheads, ...
 - Model the software according to a domain-specific application model
 - **Specify** the criticality level of each software component
 - Map the software components to execution platform resources
 - Analyse extra-functional requirements of the system
 - Generate the low-level software code/configuration from the analysis results

art2kitekt: A tool for building MCS

- Application domain profiles
 - Execution platform, application model and analysis methods are strongly coupled.
 - Different platform/model/analysis profiles will be provided for each kind of system
- Interoperability and extendability
 - Interoperability with external tools should be possible, e.g. WCET analysis, high-level application modeling, etc.
 - Importing/exporting system models using common formats, e.g. XMI, JSON, ...
 - Data-binding and APIs for common tool programming languages, e.g. C/C++, Ada, PHP, Python, ...
- A simple and fast tool deployment based on web technologies

Tool architecture

Domain-specific profiles

ARTEMIS

Domain-specific profiles

ARTEMIS

Example profiles

	Healthcare domain profile	Space domain profile					
Task Model	 Communicating tasks modeled as end-to-end flows 	 Tasks with data and control dependencies using shared resources 					
Criticality model	 Priority based time isolation with overrun detection and operational mode changes 	 Temporal and spatial isolation based on time/space partitioning 					
Prog. Lang.	C language over a POSIX interface	 Ada Ravenscar profile 					
RTOS	 RTEMS operating system 	 ORK+Linux over XtratuM hypervisor 					
Exec. Platf.	 Several processors with point-to-point links 	 Shared memory symmetric multiprocessor 					
	EMC ² EMC ² : Mixed Criticality App	plications and Implementation Approaches					

HiPEAC 2015 - Amsterdam, January 20th, 2015

Interoperability and extendability

A' R T E M I S

10

Current status

ARTEMIS

- A basic profile is under development
 - Execution platform based on Linux SMP platform
 - Schedulability analysis based on Response Time Analysis
 - C/POSIX code generation engine

		Ξ	1 Execution Platform	m 2 Ap	plication Soft	ware	3 System Analysis 4 Code Ge	eneration				
				Analysis: F	RTA nalyze	•	All transactions are feas	ible				
Execution Platform	2 Application Software 3 System Analy	sis	Code Generation			_			-			
SYSTEM +	Internal Interface Management									Change units for all fields us 🔹		
Satellite OLCI + 🖮 🖉	PROPERTIES			TASKS 🕇				▼ Deadline	us 🔻	Period us v Feasible		
Management	Name:		Name	W	CET		From To			pa		
Ū.	Internal Interface Management		OPSW_PCDM_IF_SIN2_MANAC	439	μs	• 🛍	OPSW_PCDM_ OPSW_FCLKx4	2,113 µs	11,000 µs	11,000 µs 🗸		
	Period:		OPSW_DPM_IF_SIN1_MANAGE	439	μs	▼ 🕅	OPSW DPM I V OPSW_FCLKx4 V					
	11 ms	•		4005		-						
	Deadline:		OPSW_PCLKX4_Scheduler	1235	μs	•						
	11 ms • OPSW_PCDM_IF_SIN2_MANAGER OPSW_DPM_IF_SIN1_MANAGER OPSW_DPM_IF_SIN1_MANAGER						A functional version is planned by the end of March 2015					
-11	EM SEM	C ²	EMC ² : Mix HiPEAC 2	(ed Cr 015 -	iticali Amst	ity A erda	pplications and m. January 201	Implementa	ation	Approaches	11	

Expected results

 Complete implementation of two Space domain profiles

1. Single core platform

- \cdot Task with dependencies and shared resources
- Priority based scheduling
- · RTEM OS
- 2. Multiprocessor platform
 - Parallelization of task
 - · Some details still pending
 - Priority or time triggered scheduling?
 - · RTEMS OS?

Thank you for your attention!

Questions?

