

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

MPSoC, SoA, and Dynamicity

Engaging challenges in cyber-physical systems using emerging technologies

Institute for Computer Engineering

- Introduction
 - SoA for embedded systems, Project: Genesys
 - Mixed-Criticality MPSoC, Project: ACROSS
- EMC² MPSoC redesign, increasing performance
- Exploring dynamic behavior
- Conclusion
- References

Introduction

Demands, Challenges, and Possibilities

Demands on Cyber-physical Systems

- Legislative
 - Certification for safety
- Economic
 - Energy consumption, size, time to market
- Consumer
 - Keep track with consumer electronic trends

Challenges

- Analyzability (IP Protected Systems)
- Predictability
- Composability
- Complexity Management
- Mixed-Criticality
- Certification

Constraints

- COTS Architectures
- Concepts, Tools, Methods

21.01.2015

Institute for Computer Engineering

 EMC^2

- GENESYS: Generic Embedded System Platform ¹⁾
 - Provides a framework for building embedded applications
 - Ensures essential system properties
 - Reduces design and implementation times

ACROSS: ARTEMIS CROSS-Domain Architecture²⁾

- Using GENESYS approach to build an MPSoC
- Enables mixed-criticality integration
- On the road towards certification
- 1) GENESYS: An ARTEMIS Cross-Domain Reference Architecture for Embedded Systems Roman Obermaisser; Hermann Kopetz
- 2) The ACROSS MPSoC -- A New Generation of Multi-core Processors Designed for Safety-Critical Embedded Systems Salloum, C.E.; Elshuber, M.; Hoftberger, O.; Isakovic, H.; Wasicek, A.,

Service-oriented Development

A generic template for embedded systems

WIEN

ACROSS MPSoC

Partitioning, Fault-tolerance, Certification...

Time-Triggered Network On-Chip (TTNoC)

- Deterministic communication
- Encapsulated channels

Trusted Interface Sub-System (TISS)

- Temporal and spatial isolation
- Heterogeneity

System Components

Support core functionalities

Application Components

- CPU, DSP, dedicated HW
- Automotive, Avionic, Industrial Control

ACROSS MPSoC

Demonstrators

- Automotive
- Industrial Control
- Aerospace
- Mobile Communications

Service Oriented Approach

Implementation of GENESYS

Mixed-Criticality Integration

- Temporal and Spatial Isolation
- Certification ready

Performance

- TTNoC troughput 400MB/s
- Memory limitations
- Soft-coded Processors

21.01.2015

Institute for Computer Engineering

EMC²

Extending MPSoC in EMC²

Increasing performance

TU

Hybrid-SoC

TTNoC as the communication backbone

Extended TISS for hard-coded CPU(s)

Test performance on a minimal use case

Extended use case with additional cores

Extending MPSoC in EMC²

Expected results

Prototype

- Altera Arria V
- Xilinx Zynq (considered)

Demonstrators

Space

Focus

- Performance
- Limitations of TTNoC
- Platform evaluation
- Multi-core components
- Heterogeneity
- Dynamic behavior

Adaptive Systems

Service Management, Dynamic Reconfiguration of Systems

TU

Adaptive Systems

Dynamic adaptation and reconfiguration using ontologies

Ontology 3)

- Concepts
 - Structure
 - Property (Speed, Length,...)
 - Transfer functions
- Relations
 - Describe sub-system dependencies
 - e.g. controls, inputs, provides...

Reconfiguration

 On failure find an alternative way to acquire service

Challenges

- Architectural support
- Methodology
- Time predictable algorithms

EMC²

- 3) Ontology-based runtime reconfiguration of distributed embedded real-time systems Hoftberger, O.; Obermaisser, R.,
- 4) Runtime Evaluation of Ontology-based Reconfiguration of Distributed Embedded Real-Time Systems Hoftberger, O.; Obermaisser, R.,

21.01.2015

Institute for Computer Engineering

- MPSoC with hard-coded CPU component
 - Evaluate overall capabilities
 - Maintain temporal and spatial isolation
- Exploring service based development
 - Dynamic service management
 - Connect existing architecture with new tools and methods
- Dynamic reconfiguration of systems
 - Increasing system effectiveness and dependability

- GENESYS: An ARTEMIS Cross-Domain Reference Architecture for Embedded Systems Roman Obermaisser; Hermann Kopetz
- The ACROSS MPSoC -- A New Generation of Multi-core Processors Designed for Safety-Critical Embedded Systems Salloum, C.E.; Elshuber, M.; Hoftberger, O.; Isakovic, H.; Wasicek, A.,
- Ontology-based runtime reconfiguration of distributed embedded realtime systems Hoftberger, O.; Obermaisser, R.,
- A) Runtime Evaluation of Ontology-based Reconfiguration of Distributed Embedded Real-Time Systems Hoftberger, O.; Obermaisser, R.,

Thank you!

