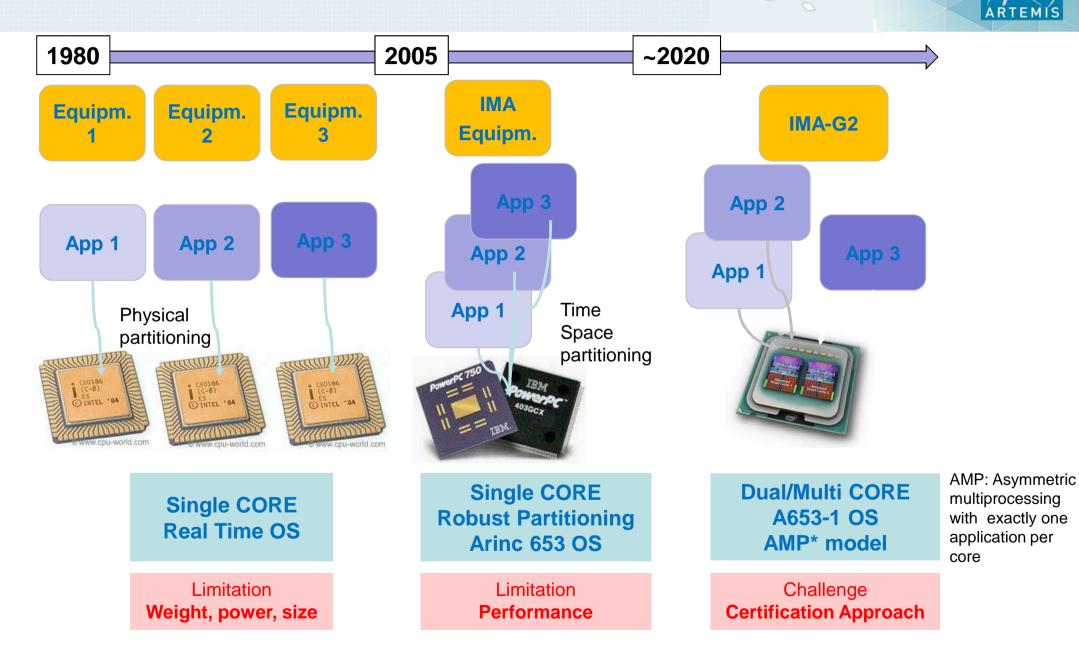


EMC² Use Case:

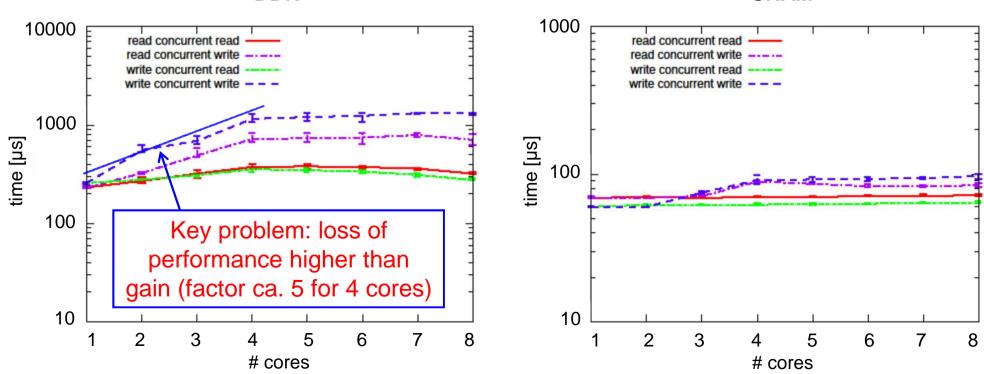
Hybrid Avionics Integrated


Architecture Demonstrator

Bernd Koppenhöfer / Dietmar Geiger Airbus D&S Electronics

From Single to Many Cores Processors

EMC²



DDR

- Maximum interference of one core by other cores test setup for DDR vs. SRAM (Level 3 Cache)
- Concurrent access to memory regions with 4 cores (4kB regions, 64B gap, 1 to 8 cores, ...)

SRAM

FMC²

P4080 Evaluation Results (2)

EMC²

Airworthiness Authorities view:

E.g. Integrated Modular Avionics (IMA) - Guidance DO297

Key Applications Characteristics	Description	
Application developed independent from each other Incremental acceptance	Applications independent verified on the platform	4
Applications implemented without unintended interactions with other applications	Applications can be verified independently Finally complete suit of applications needs to be implemented and interactions to be verified	4
Applications may be reusable	Application modularity and portability	4
Applications may be modified independently	Each application modifiable with limited or no impact on other applications	4

See workshop "MCS" for details on IMA/DO297.

Design Alternatives for Avionics Industry

- Stay with single Core processors
 →Not really a long term solution
- The deterministic MultiCore

 → Where is the Chip Vendor / Market
 → we love this approach, but is it realistic ?
- Only use Core intrinsic Resources (Cache)
 → Still possible conflicts with external resources

• In Service Experience

- \rightarrow How many hours do we need in which system configuration
- \rightarrow Focus on limited number of different devices and configuration settings
- System Safety Net Monitoring and Mitigation on System level
 → Specific for the Application

HW Safety Net - Monitoring of the device function independent of the application on HW-level
 → Versatile approach

FMC²

HW Safety NET: Safety-driven Design constratrains

Requirements:

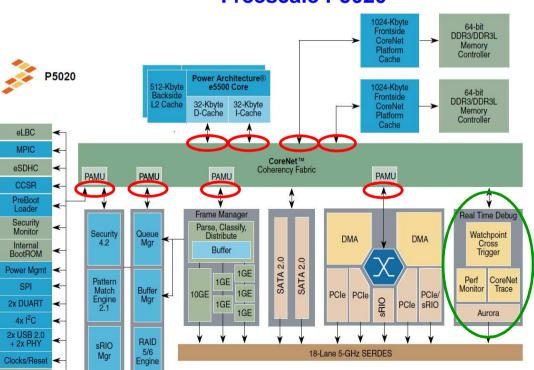
- Issues inside the MCP shall be detected
- Decision needs to be outside the MCP
- Monitoring should be independent of application (otherwise no open platform)

Effectivity of HW Safety NET has to be demonstrated

Approval from Authority required

- \rightarrow This can only be a stepwise approach
- Implement on a less critical System
- Gain Experience

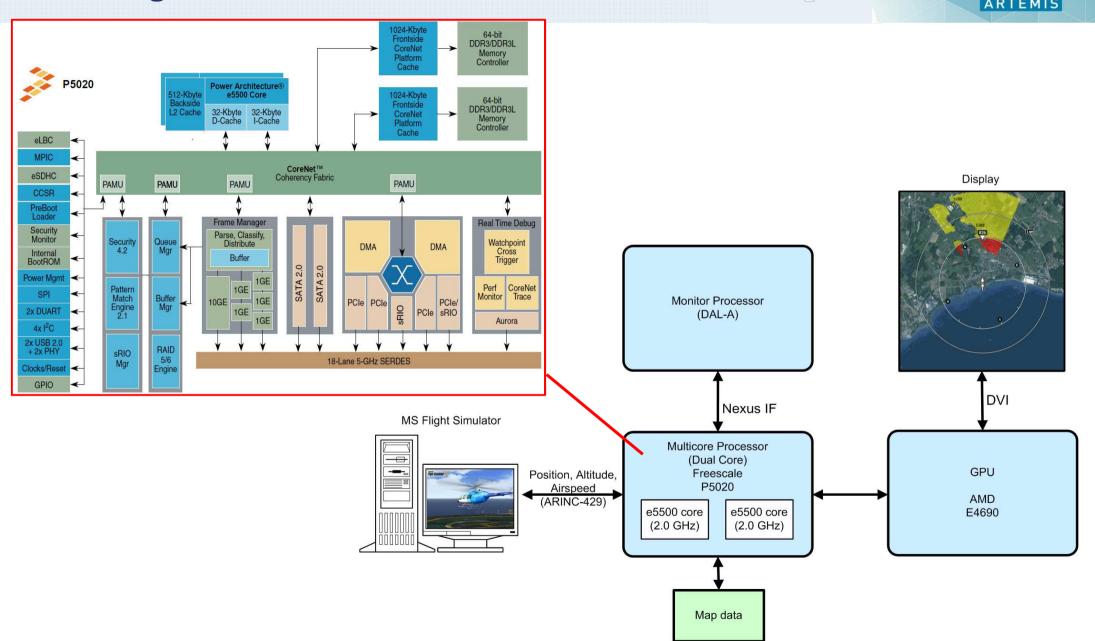
HW Safety NET: Monitoring Approach


EMC²

- Carefully Select Chip Manufacturer and Target MCP
- Investigate possible interference channels on the chip
- Cooperate with Chip Manufacturer to understand nature of interferences
- Define Correct Configuration and Usage Domain of the MCP
- Propose Monitoring Strategy Together with Chip Manufacturer
- Propose Mitigation Strategy
- Demonstrate Effectiveness of Mitigations
- Involve Authority in Investigation

Monitoring Points O

Bandwidth – Timing ??


⇒ Selection of Monitoring Interface Can we use the **Debug Interface** for Monitoring

Test Platform: Freescale P5020

GPIO

Avionics Demonstrator: Blockdiagram

EMC²

Avionics Demonstrator: Sample Application HTAWS

Helicopter Terrain Awareness and Warning System

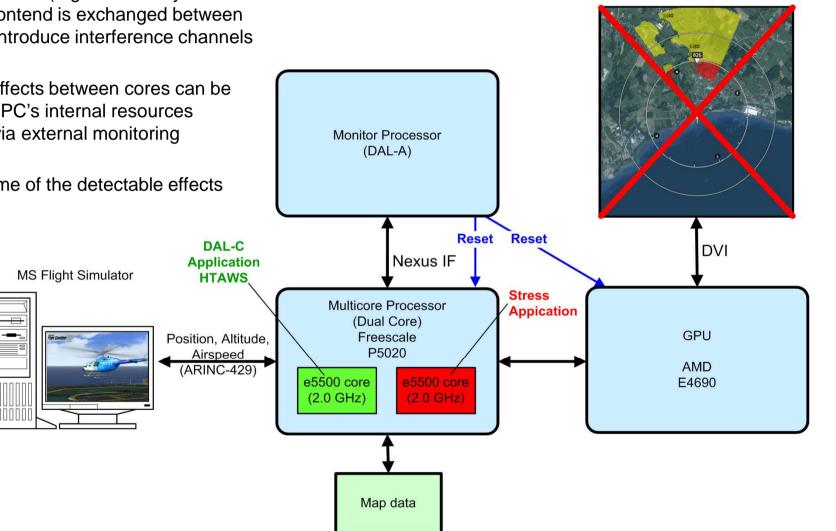
- Supports pilots
 - flying at night
 - in chaning weather with poor visibility
 - rough terrain or at low altitudes
- To prevent avoidable collisions with ground or obstacles
- Provides a comprehensive, map based overview of helicopter's surroundings

EMC²

Avionics Demonstrator: Further Activities (1)

- 1. Implement HTAWS at one e5500 core and a Stress Application one other e5500 core
- 2. Search for MPC specific features (e.g. coherency fabrics which ensures that cache contend is exchanged between different cores) which may introduce interference channels between cores.
- Investigate, if interference effects between cores can be detected by monitoring of MPC's internal resources (e.g. memory access rate) via external monitoring processor

Monitor Processor (DAL-A) DAL-C DVI Nexus IF Application **MS Flight Simulator** HTAWS. Stress Multicore Processor Appication (Dual Core) GPU Position, Altitude, Freescale P5020 Airspeed (ARINC-429) AMD e5500 core e5500 core E4690 (2.0 GHz) Map data



Display

Avionics Demonstrator: Further Activities (2)

- 1. Implement HTAWS at one e5500 core and a Stress Application one other e5500 core
- 2. Search for MPC specific features (e.g. coherency fabrics which ensures that cache contend is exchanged between different cores) which may introduce interference channels between cores.
- Investigate, if interference effects between cores can be detected by monitoring of MPC's internal resources (e.g. memory access rate) via external monitoring processor
- 4. Implement mitigation for some of the detectable effects

EMC²

Display

Thank you for your attention!

This investigations were partly funded by: Bundesministerium für Bildung und Forschung 53170 Bonn Forderkennzeichen: 01 IS14002D Verbundprojekt EMC2

Joint Technology Initiative – Collaborative Project (ARTEMIS) ; ARTEMIS-2013-1 Grant Agreement Number 621429