EMC² Mixed Criticality Medical Imaging co-location of real-time and non-real-time processing on a single chip/board

Bastijn Vissers Philips January 2015

Index

- Use-case
- (Our) EMC² Goal
- (Our) EMC² Challenges

A day in the life of a hospital MR department

Image removed; redaction of confidential information The next slide contains abstraction of removed image

A day in the life of a hospital MR department

Post-processing: track fibers in the brain

Post-processing: track fibers in the brain

- In some cases the fibers cannot be tracked or show poor results
 - Cause is in the source data
 - Requires a patient callback
 - Not pleasant for the patient
 - Not pleasant for the schedule
 - Not pleasant for the costs
 - Not pleasant for anybody

EMC² Goal

MRI Exam cards selection, MRI Acquistion, (pre)processing, and viewing (UI) on single system

- Create a system that allows identification of such issues in early stage
 - Requires post-processing to run while, or right after, scanning
 - Requires advanced viewing at the MRI Scan Room
 - Requires to be ready within the time the patient is available

Main challenge: go from separate tasks deployed on separate systems to a single system solution

- Detecting issues in the early stage requires advanced viewing at the MRI room
 - Advanced viewing of post-processed data requires the post-processed data
 - Post-processing executed on separate machine
 - Post-processing executed only after the storage system (PACS)
 - Post-processing requires the reconstructed data
 - Reconstruction requires acquisition data (MRI)

PHILIPS

Main challenge: go from separate tasks deployed on separate systems to a single system solution

- Combine multiple applications on a single system
 - Acquisition High criticality; Medium performance req. Cannot be blocked
 - Reconstruction Medium criticality; High performance req. Block only temporary
 - Post-processing Low criticality; High performance req.
 - Viewing Low criticality; Low performance req.
- But:
 - Multi-critical applications
 - Performance requirements
 - Resource management

MRI Scanner

PHILIPS

Picture Archiving and

Communication System (PACS)

Main challenge: go from separate tasks deployed on separate systems to a single system solution

Main challenge: go from separate tasks deployed on separate systems to a single system solution

Main challenge: go from separate tasks deployed on separate systems to a single system solution

Application 1	Application 2	Application 3	
App Container	App Container	App Container	
Management Layer			\int
ł			
Mult			

- Application modeling
 - Specify required amount of resources
 - Specify criticality level
 - Specify temporal information regarding required resources to enable DSE.
- Platform modeling
 - Service to request resources for applications with given criticality
 - Specify available resources
- DSE

EMC2

- Feasibility analysis based upon mapping, criticality, and temporal information
- Determine resource requirements
- Identify bottlenecks
- Identify utilization

Main challenge: go from separate tasks deployed on separate systems to a single system solution

EMC2

Application 1	Application 2	Application 3	
App Container	App Container	App Container	
	\int		
H			
Multi-core Hardware Platform			

- Legacy code
 - Two major archives, 11M+ LOC, >10Y development
 - Resource requirements not known in detail
 - Temporal behavior
- 'Macro' vs. 'Micro'
 - We have applications requesting resources, not a low-level task breakdown
- Online vs. offline allocation
 - DSE typically offline, we want to explore runtime analysis and allocation management (in addition to offline)

PHILIPS

Main challenge: go from separate tasks deployed on separate systems to a single system solution

Application 1	Application 2	Application 3	
App Container	App Container	App Container	$\left \right\rangle$
Management Layer			5
Host Operating System			
Multi-core Hardware Platform			

Partners in EMC²

EMC2 Wector Fabrics

Program verification tools to check safety of memory accesses in sequential and parallel programs

FUDelft

Design tools to enable analysis of system communication patterns

Thank you