

Models for Mixed Criticality

Mladen Berekovic

Computer Engineering TU Braunschweig

EMC2 Workshop @ Hipeac 2016 in Prague

- January 2016
- Targeting all technologies from EMC2
- Will Circulate Call for Papers via email
- https://www.hipeac.net/2016/prague/

Feel Encouraged to submit !

Design Methodologies for Mixed Criticality on MPCs

- Design Tools & Methodologies have to reflect increased complexity
- Introduction of formal methods
 - Worst-Case Execution Time Analysis (WCET)
- Early System Validation of Hardware & Software Components / Integration
- Faster Simulation Methods

Virtual System Prototyping

What is a virtual prototype ?

Demo System on a Virtual System Platform

Virtual System Platform (VP)

- Is a fast functional (SW-) Model of an embedded system (e.g. ECU real or future)
- Consists of a (fast) Instruction-Set Simulator (ISS) and a set of models of chipand board components (Bus, Memory, etc.)
- Executes the same *Binaries* as the (ECU) Hardware
- Runs on Standard Compute Platforms
- Uses Electronic-System-Level (ESL) Design-Techniques based on SystemC and TLM for a fast Hardware-Software Simulation

A Virtual System Platform looks to the OS / Applications like **real** hardware

Virtual System prototyping in the Automotive Development Process – OEM as architect and integrator

- Separation of technical and functional integration
 - Tier1: Secures Execution of SW (techn. Integration)
 - OEM: Tests Functionality of a subsystem (funct. Integration)

Virtual System prototyping in the Automotive Development Process – OEM as architect and integrator

- Separation of technical and functional integration
 - Tier1: Secures Execution of SW (techn. Integration)
 - OEM: Tests Functionality of a subsystem (funct. Integration)
- Virtual Prototyping: Early Availability of an "executable spec" within the supply chain

Electronic-System-Level (ESL) Design: Virtual System-Platform with SystemC/TLM

Concrete: ECU as Virtual System-Platform

- Complete Software-Simulation of the Hardware/Software-System,
- Hardware-in-the-Loop (HILS) ECU replaced with Software-based "Virtual Hardware-in-the-Loop" (virtual HILS).

Virtual Hardware-in-the-Loop (vHILS)

ES Software Development with Virtual Prototypes

Software-Design on Virtual System-Platforms (e.G. with Cadence VSP Tool)

Early Software- and System-Development

- High-Performance-Simulation, runs with Production-Software,
- Higher SW-Design-Productivity with Multi-core-HW/SW-Debugging.

Fast Platform Design, Debugging und Analysis

- HW/SW-Debugging,
- Plattform- and Functional-Profiling, to localise Bottlenecks.

Validation of von Hardware/Software-Integration 1 year before Availability of Hardware

- Unified HW/SW-Simulator for System-Validiation (e.G. with Cadence VSP),
- Enables finer Synchronisation between HW- & SW-Design in the Development cycle

Tool-Support for Embedded-Software-Design (ESD) on virtual Platforms

"Programmer's View" of Hardware models only those aspects of hardware that are needed for software debugging. Alle other Hardware Aspects are abstracted from theSW-developer.

- Programmer's View of Hardware
 - Processor- und Peripheral-Registers "viewing" and trace,
 - Memory View,
 - Interrupt/Reset Trace,
 - "Waveform" type view von interrupts, resets, HW-Register-accesses,
 - Peripherals accessible through a processor.
- Processor/Core Sensitive GUI Views
- "One-click" Launch & Debugging of several ESD-Executables on a single VP
- Full ESD-Debug of Multi-core und Multi-Prozessor
- Non-intrusive ESD Trace, Analysis & Profiling finds more problems than ESD- Debug
 - Line, Function coverage, Memory Allocation Trace

Performance of Virtual Platform Simulation Camera Demonstrator

Mixed FPGA/VP-Simulation:

- Simulation speed 13MHz
- High Accuracy at full testability

VP-Demonstration:

- Street sign detecion
- Almost in real-time

Embedded World 2013 (Cadence)

• <u>http://goo.gl/T2BjZ</u> (Youtube)

Realization of Virtual System-Platforms with Electronic-System-Level Design Methodology (ESL)

- ESL is a standard that is based on SystemC/TLM (IEEE 1666-2005) (C/C++ based) for fast Hardware-Simulation.
- HW und SW are developed in a **single** language (C++) instead of C/C++/Java and Verilog.
- **ESL** is basde on the simplified modeling of HW/SW-Systems from a communication perspective (**TLM**: Transaction-Level Modeling).
- A System-Modeling on Transaction Level (**TLM**), delivers a speedup of the HW/SW-System Simulator by a factor of of 1000-10000. This enables **virtual prototyping** on a workstation without real hardware ("Executable Spec").
- A System-Modeling on Transaction-Level (**TLM**), is possible on 3 levels of detail that can also be mixed (mixed-mode simullation) for verification and validation purposes
 - LT (loosely timed): Abstract model for fast software verification,
 - AT (approximately timed): 90% Cycle-true, 90% speed
 - CT (cycle-true): Fully detailed hardware model
- The high Abstraction level together with the high simulation speed enables prototyping and design space exploration of complex hardware/software systems such as ECUs.

HW/SW-Integration in the system design

Validation of the HW/SW-Integration as part of the development cycle

HW/SW-Design with Transaction-Level Modellierung (TLM)

- Separation of Function und Communication (Orthogonality)
- Function und Communication each adequately abstract
- Refine Component, Communikation as coarse transaction of abstract Data packages
- Abstract Component, but precise Bus-Protocol (e.g. Bus-data traffic estimation)
- Virtual System-Platformen (VP), Simulation of Function and Communication
- Virtual Prozessors are binary- and register compatible
- Hybrid (TLM/RTL) Model f
 ür cycle-true simulation possible (SystemC and Verilog joint simulations possible; hybrid mixed-mode-Simulation)

System-Realization with SystemC and TLM

TLM-based Module-Design accelerates Time-To-Market

Advantages of Virtual HILS-System-Platforms with ESL

- Already during Hardware design phase software design and fast, virtual debugging in parallel is possible
- In contrast to hardware prototypes, system configuration can be changed with little effort, e.g. to evaluate other busses, protocols or hardware components
- Direct connection of the ESL framework enables early design, testing and debugging of the board-network

- Hardware simulation enables IP protection against external developers. Hardware Modules can be swapped as binaries (encapsulation of IP)
- Error Correction effort in the late development process can be significantly reduced through "virtual hardware in the loop" methodology
- ESL-Platform can be replicated arbitrarily and used worldwide on servers (no hardware development boards needed). This enables development in parallel
- ESL can be used as a strategic tool for comparison of supplier hardware or software building blocks in board networks
- Integration and evaluation of HW/SW component from different suppliers can be achieve dwithin hours

Cooperation with European Space Agency (ESA) for research in advanced development methodologies for aerospace systems.

ESA Home Space Er	gineering Electrical
About us	•
Technologies for Space	SoCROCKET Virtual Platform - SystemC
ESA IP Cores Development Methodology	The SoCRocket Virtual Platform and SystemC modeling library provide models and tools for designing embedded systems for various applications. Primary use cases are design-space explorations at different levels of abstraction and development stages. Thanks to the
System-On-Chip (SOC)	 built-in reconfiguration mechanism, hardware and software components can be parameterized without superfluous compilations and linking.
ASIC Developments History	Virtual Platform A Virtual Platform is a software based system that can fully mirror the
System Level Modeling	functionality of a target System-on-Chip or board. SoCRocket contains all the tools. mechanisms and interconnection
Electronic System-Level Design Methodology	unified simulation environmer
System-Level Modeling in SystemC	For example it: Allows the interconnec Concernent Exploration Prototyp (
SystemC IP-Cores Library	IPs Provides a tool for the
LEON2/3 Integer Unit -	embedded system, alk Compile SW Compile Simulator (H
SpaceWire-b CODEC - SystemC	Allows Integration, ver Allows early software (Sw EF Sw EF Platform Simulator E
SoCROCKET Virtual Platform - SystemC	debugging (such as ac breakpointing, etc.), n
Virtual Platform	software Allows performance an
Search	execution time, comm Config. Configuration (son) HW Runtime Configuration Band UIA Closed
GO	even power consumpti

www.esa.int/TEC/Microelectronics/SEMW9XK1QAH_0.html

Overview

Mladen Berekovic | 2015 | Page 21

SoCRocket

- SystemC/TLM modeling library with Aerospace IP
- Design Flow for architecture exploration at different levels of abstraction
- Simulation and analysis infrastructure

SystemC/TLM modeling library

- Contains core components for construction of aerospace SoCs

Component design methodology

- Building blocks for generating new components, based on inheritance from library classes (AHB/APB Master/Slave, Signal Master/Slave, ClkDevice, GreenReg, ...)
- Support for loosely-timed (LT) and approximately-timed abstraction (AT)

Design Flow for construction of Virtual Prototypes

High-Level DSE Demonstration

Use case:

Lossless multi-spectral / hyper-spectral image compression

Software environment:

RTEMS Real-Time OS

Exploration parameters:

- Number of icache banks (1 .. 4)
- Capacity of icache banks (1kB .. 8 kB)
- Number of dcache banks (1 .. 4)
- Capacity of dcache banks (1kB .. 8 kB)
- Number of CPUs (2, 4, 6)

Optimization goal:

- Simulation time
- Average power consumption

Power vs. Performance

Conclusion

- ESL/TLM design methodology for HW/SW-Systems enables register or binary compatible hardware simulation models that run in real-time.
- Early Availability of prototypes enables early SW- Design and System integration on the target platform.
- Integration and System-Validation at OEM (virtual HILS) can begin before availability of HW (A-Muster).
- vHILS offers an early option to Validiate parts of the Reqirements ("Lastenheft") before the A-Muster.
- vHILS enables a quick evaluation of ECU-Implementation variants (HW/SW): CPU, Memory, Performance, Load, Costetc.

Conclusion

- New C++ based Modeling Technology that focuses on communication
- Single language for hardware and software eases hardware/software co-design
- Abstract Models offer faster path to modifications, easier maintainability
- Fully binary compatible VP models at different levels of granularity
- Simulation speeds close to real-time make use of VPs in design space exploration possible ("Virtual Hardware Platform in the Loop")
- Enables replacement of ES Hardware System Design Platforms with pure Software Solutions
- New Methodologies for non-functional requirements validation, e.g. Fault Injection, reliability, power,

